
ABSTRACT

EARTHPERSON, ARJUN. A Data-Parallel, Hardware-Accelerated Monte Carlo Framework
for Quantifying Risk using Probabilistic Circuits. (Under the direction of Dr. Mihai A.
Diaconeasa).

Quantitative risk assessment traditionally relies on exhaustive enumeration of minimal

cut sets, a process that grows combinatorially with model size and therefore struggles

with the multi-hundred–component systems encountered in contemporary nuclear safety

studies. This dissertation introduces a Monte-Carlo paradigm that sidesteps explicit state-

space exploration by evaluating the underlying probabilistic directed acyclic graph directly

on modern data-parallel hardware, treating the full set of inter-linked event trees, fault

trees, and their dependencies as a single unified computation graph. The proposed solver,

mcSCRAM, is accompanied by a suite of theoretical and algorithmic advances. First, we

formalize hardware-native gates for threshold and cardinality voting, prove their estimator

equivalence to classical AND/OR expansions, and demonstrate exponential savings in graph

size and kernel launch overhead for gates with high fan-in. Second, we develop a knowledge

compilation pipeline, specifically tailored to Monte Carlo workloads. Third, we derive first-

order importance measures and extensions for common-cause failure analysis within the

Monte Carlo paradigm. Extensions include a composite convergence criterion that fuses

frequentist, Bayesian, and information-theoretic diagnostics, guaranteeing statistical accuracy

under user-specified budgets. Formal proofs establish unbiasedness, variance preservation, and

convergence rates for all estimators. Comprehensive benchmarks on the 43-model Aralia fault

tree dataset show that the compiled graphs, no longer subject to exact inference constraints,

can be compressed by a median factor of 1.3×. During simulation, the solver achieves fully

saturated device throughput, converging to sub-percent relative error on graphs with a few

thousand events in under five seconds—even on entry-level consumer GPUs. The rare-event

regime remains challenging but is mitigated by the proposed importance-sampling extension.

Sensitivity studies confirm that randomness quality and convergence diagnostics jointly prevent



premature termination. The work demonstrates that data-parallel Monte-Carlo techniques can

match the accuracy of exact solvers while scaling to models previously considered intractable.

Limitations include residual inefficiency for events with probabilities below 10−8, reliance on

specialized hardware for peak performance, and the need for further validation on full-scale

industry PRA benchmarks. Nevertheless, the methodological foundation laid here opens

avenues for stochastic, gradient-based optimization, adaptive variance reduction, and real-time

risk monitoring in future research.



An Informal Overview

Why another PRA solver? Probabilistic risk assessment for large nuclear systems asks a

simple question: how likely is an accident, given thousands of component failures, recoveries,

and human actions? The textbook solution (build a decision diagram, or enumerate every

failure combination) scales exponentially and quickly becomes impractical. Over the years

analysts have tamed that combinatorial surge with gate restrictions, bounding tricks, and

rare-event approximations; the price has been either coarse error margins or hours‐long

runtimes.

A different stance: sample first, ask questions later. Instead of traversing every

Boolean state, we draw random global scenarios and evaluate the entire logic graph in one

pass. The key enabler is hardware parallelism: by packing 64 Bernoulli trials into a 64-bit

word we turn Boolean gates into bitwise instructions and let modern GPUs churn through

billions of scenarios per second. The solver, mcScram, views the complete PRA model

(nested event trees, fault trees, and their cross-links) as one unified probabilistic directed

acyclic graph (PDAG) that is sampled and tallied en bloc.

What falls out of that design?

• Flexibility. Any gate expressible in Boolean logic (NOT, k-out-of-n voting, XOR,

Cardinality, …) is handled without extra coding.

• Speed. On a mid-range laptop GPU the method converges to sub-percent error for

graphs with a few thousand events in . 5 seconds.

• Extensibility. Because sampling is the only primitive, common-cause failures, impor-

tance measures, and importance sampling plug in naturally.
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What it is not. The approach is still Monte-Carlo: for events rarer than 10−8 additional

variance-reduction techniques are required, and maximum throughput depends on access to a

GPU or other SIMD hardware.

Road map.

• Chapter 4 (Part I). Formalizes PRA models as probabilistic DAGs.

• Chapters 7–11 (Part III). Present the data-parallel Monte-Carlo engine—sampling,

gate kernels, tallying, and backend scalability.

• Chapters 13–18 (Part IV). Detail refinements: randomness guarantees, composite

convergence policy, common-cause failure handling, importance measures, importance

sampling, and hardware-native voting gates.

• Chapters 12 and 19. Benchmark accuracy, runtime, and structural compression on

the Aralia suite.

• Part V. Outlines future “inverse-problem’’ directions such as parameter fitting.
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Chapter 1

Introduction

1.1 Motivation

Probabilistic risk assessment (PRA) provides the quantitative substrate on which safety-

critical decisions for nuclear installations are made. From the landmark WASH-1400 study

through subsequent regulatory frameworks, its influence has grown in lock-step with the

complexity of the engineered systems it seeks to evaluate. Modern reactor models couple

hundreds of event trees with thousands of fault trees, each containing many tens of thousands

of basic events. The Boolean logic underpinning these structures is exacting—but it is also

unforgiving: the number of minimal cut sets increases combinatorially with gate fan-in, and

the inclusion–exclusion expansions required for exact probability calculations quickly exceed

any realistic computational budget.

Historically, analysts have mitigated this hurdle through a hierarchy of approximations:

truncating low-order terms, bounding probabilities with min-cut upper limits, or forcing the

logic into syntactic fragments that are amenable to binary-decision diagrams. These techniques,

implemented in widely deployed tools such as FTREX, SAPHIRE, SCRAM, XFTA, and

RiskSpectrum, remain workhorses of industry practice. Yet each approximation trades rigor

for tractability, often at the cost of conservatism or opacity – an increasingly unattractive
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compromise as regulatory emphasis shifts toward risk-informed, performance-based licensing.

A different path has opened in the last decade. The proliferation of many-core GPUs,

coupled with mature programming models, enables billions of independent arithmetic op-

erations per second on commodity hardware. Monte Carlo (MC) simulation is naturally

aligned with such architectures: because individual samples are statistically independent,

they map cleanly onto the embarrassingly parallel compute model of modern accelerators.

Sampling the global state of a PRA model therefore offers a conceptually simple alternative

to symbolic enumeration, provided that three longstanding obstacles can be overcome: (i)

efficient generation of high-quality random events at scale, (ii) evaluation of large Boolean

circuits at hardware line-rates, and (iii) principled convergence diagnostics that certify the

statistical quality of the resulting estimates.

This dissertation tackles those obstacles head-on. It introduces a data-parallel Monte

Carlo framework that compresses system states into machine-word bit-vectors, evaluates

entire layers of the PRA logic in a single pass, and embeds rigorous stopping rules that blend

frequentist and Bayesian error metrics. By revisiting PRA quantification from a hardware-

conscious perspective we aim not merely to *approximate* classical methods but to redefine

the achievable trade-space between fidelity and turnaround time. The developments that

follow build the theoretical, algorithmic and empirical foundations for that goal.

1.2 Scope & Objectives

This dissertation seeks to rethink quantitative risk assessment from a hardware-conscious,

data-parallel perspective. Its specific objectives are:

O1. Methodological foundation. Devise a Monte-Carlo workflow that evaluates complete

PRA models—including all inter-linked event trees and fault trees—without minimal-cut

enumeration or logic simplifications.

O2. Algorithmic and data-structure design. Create compilation, storage, and kernel-
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evaluation strategies that exploit many-core GPUs, multi-core CPUs, and reconfigurable

hardware while remaining portable across architectures.

O3. Robust statistical machinery. Extend the baseline sampler to handle domain-specific

challenges—rare events, common-cause failures, and importance derivatives—and embed

composite convergence diagnostics with provable error guarantees.

O4. Empirical validation. Benchmark the resulting framework on public PRA datasets,

reporting reproducible metrics for accuracy, runtime, and memory footprint, and compare

its fidelity and performance to established exact and approximate tools.

Although the primary test bed is nuclear safety analysis, the techniques generalize to any

industry that models complex Boolean risk scenarios (e.g. aerospace, chemical processing,

autonomous vehicles). Dynamic simulations and strongly correlated uncertainty models lie

outside the immediate scope; however, the architecture is deliberately extensible so that such

capabilities can be integrated in future work.

1.3 Key Contributions

The principal technical contributions are:

C1. Unified, data-parallel Monte-Carlo framework. We design mcSCRAM, a hardware-

accelerated sampler that evaluates the entire probabilistic directed acyclic graph (PDAG)—all

coupled event trees and fault trees—in a single, layered pass without minimal-cut enu-

meration.

C2. Hardware-native voting and cardinality gates. We introduce bit-parallel algorithms

for k-of-n, at-most, exact, and cardinality predicates, prove estimator equivalence to

classical AND/OR expansions, and show exponential savings in graph size and kernel-

launch overhead.
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C3. Knowledge compilation re-imagined for Monte Carlo queries. We interrogate

the design space of circuit transformations when the end-user query is high-throughput

sampling rather than tractable logical inference. Dispensing with traditional normal-form

constraints (e.g. decomposability and smoothness), we develop a pipeline that prioritizes

arithmetic intensity, graph depth, and kernel locality; an indexed linear map and iterative

gate normalization drive up faster compilation and a median 1.3× structural compression,

illustrating the different optimality criteria that emerge once exact inference is no longer

the goal.

C4. Composite convergence diagnostics. We formulate a stopping rule that fuses Wald,

Bayesian, and information-theoretic criteria, providing rigorous error guarantees even in

the rare-event regime and under external wall-time or iteration budgets.

C5. Domain-specific extensions. The framework incorporates: (i) common-cause failure

groups through auxiliary/shadow nodes, (ii) first-order importance and sensitivity mea-

sures via in-tally covariance accumulation, and (iii) an importance-sampling module for

ultra-rare events—all without modifying the core kernels.

C6. Open-source implementation and benchmarks. A SYCL-based reference imple-

mentation runs on GPUs, CPUs, and FPGAs; public benchmarks on the 43-model Aralia

dataset demonstrate sub-percent relative error on graphs with a few thousand events

in <5�s on entry-level GPUs, surpassing established PRA tools in throughput while

matching their accuracy.

1.4 Outcomes & Related Documents

A core objective of this research program is open dissemination—code, data, and analysis

tools are released under permissive licenses so that the wider PRA community can build upon

them. Many of the outcomes listed below are the result of multi-institution collaborations
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and student projects; only a subset represent my direct, first-author contributions.

1.4.1 Software

The following repositories are maintained under the OpenPRA umbrella, an open–source now

comprises over a dozen active contributors from academia and industry. Unless otherwise

noted, my role has been to architect the core infrastructure and mentor student developers;

day-to-day development is a shared effort.

• @openpra-org/openpra-monorepo: Mono repository for the OpenPRA web appli-

cation [61]. Core code contributions for the distributed microservices developed in this

study are integrated here.

• @openpra-org/model-benchmarks: Benchmarking suite for SCRAM, XFTA, FTREX,

SAPHSOLVE using benchexec in Docker [37]. Continuous Integration pipelines for

automated runs & report generation are available.

• @openpra-org/PRAcciolini: Automates the conversion, validation, & translation of

PRA models. Provides interfaces for describing grammars & translation rules between

schema. [32].

• @openpra-org/model-generator: CLI utility for creating stochastically generated

synthetic event trees & fault trees. Supports OpenPSA, SAPHSOLVE, FTREX and

OpenFTA schema. [38].

• @openpra-org/mef-schema: Schema definitions for OpenPRA supported model

exchange formats including FTREX FTP, SAPHSOLVE JSInp, JSCut, OpenPSA

XMLs, & canopy flatbuffers [39].

• @openpra-org/multi-hazard-model-generator: Generates multi-hazard event trees

& fault trees in MAR–D from internal events PRA models [21].
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• @a-earthperson/canopy-benchmarks: Accuracy & performance benchmark scripts

for canopy [31].

1.4.2 Datasets

All datasets are published on Zenodo with citable DOIs and were curated jointly with

collaborators at North Carolina State University and Idaho National Laboratory.

• Generic Pressurized Water Reactor (PWR) SAPHSOLVE Model: Reference

PWR model in SAPHSOLVE JSON (JSInp) format, supporting benchmarking &

verification tasks [5].

• Generic Pressurized Water Reactor (PWR) Open-PSA Model: Equivalent

PWR model in OpenPSA XML for cross-tool benchmark comparisons [4].

• Generic Modular High Temperature Gas-cooled Reactor (MHTGR) Model:

Reference PRA model for a modular high temperature gas-cooled reactor, including

event trees, fault trees, and basic event data in SAPHIRE and CAFTA formats [51].

• Synthetic SAPHSOLVE Models: Synthetically generated PRA models for bench-

marking, quantification, & code verification [7].

• Synthetic OpenPSA Models: Synthetically generated OpenPSA XML format models

for benchmark studies [6].

• openpra-org/synthetic-models: Centralized collection of stochastically generated

PRA models in multiple supported formats, for validation & stress testing of quantifi-

cation engines [12].

• Benchmarking SAPHIRE, SCRAM & XFTA: Dataset of synthetically generated

fault trees with common cause failures, for head-to-head tool verification [34].
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• Generic OpenPSA Models: The Aralia Fault Tree Dataset: Curated, large-scale

synthetic PRA fault trees & event trees, compatible with the OpenPSA data model [35].

• Post-processing Analysis & Supplementary Notes: Excelsheets, plotting analysis,

MATLAB scripts used for curating & analyzing the generated raw results. [33].

1.4.3 Journal Articles

Selected peer-reviewed outputs from the broader research team.

• A Critical Look at the Need for Performing Multi-Hazard Probabilistic Risk Assessment

for Nuclear Power Plants, Eng, 2021 [15].

• [Under Review] Enhancement Assessment Framework for Probabilistic Risk Assessment

Tools, Reliability Engineering & System Safety, 2025 [17].

• [Under Review] A Systematic Diagnostics and Enhancement Framework for Advancing

Probabilistic Risk Assessment Tools, Nuclear Technology, 2025 [16].

1.4.4 Conference Papers

2022

• Benchmark Study of XFTA and SCRAM Fault Tree Solvers Using Synthetically

Generated Fault Trees Models, American Society of Mechanical Engineers (ASME)

International Mechanical Engineering Congress and Exposition (IMECE) [18].

2023

• Introducing OpenPRA: A Web-Based Framework for Collaborative Probabilistic Risk

Assessment, ASME IMECE [36].
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• Model Exchange Methodology Between Probabilistic Risk Assessment Tools: SAPHIRE

and CAFTA Case Study, American Nuclear Society (ANS) Probabilistic Safety Assess-

ment (PSA) [50].

• Preliminary Benchmarking of SAPHSOLVE, XFTA, and SCRAM Using Synthetically

Generated Fault Trees with Common Cause Failures, ANS PSA [43].

• Methodology and Demonstration for Performance Analysis of a Probabilistic Risk

Assessment Quantification Engine: SCRAM, ANS PSA [11].

• Method of Developing a SCRAM Parallel Engine for Efficient Quantification of Proba-

bilistic Risk Assessment Models, ANS PSA [10].

2024

• Advancing SAPHIRE: Transitioning from Legacy to State-of-Art Excellence, ANS

Advanced Reactor Safety (ARS) [85].

• Evaluating PRA Tools for Accurate and Efficient Quantifications: A Follow-Up Bench-

marking Study Including FTREX, ANS ARS [42].

• Towards a Deep-Learning based Heuristic for Optimal Variable Ordering in Binary

Decision Diagrams to Support Fault Tree Analysis, ANS ARS [41].

• Enhancing the SAPHIRE Solve Engine: Initial Progress and Efforts, ANS ARS [8].

• Introducing OpenPRA’s Quantification Engine: Exploring Capabilities, Recognizing

Limitations, and Charting the Path to Enhancement, ANS ARS [9].

2025 (Accepted)

• Automated OpenPSA Model Generation from Reliability Diagrams Using Agentic

Retrieval Augmented Generation: A Case Study on MHTGR, ANS PSA [66].
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• Design and Implementation of a Distributed Queueing System for OpenPRA, ANS

PSA [67].

• Synthetical Model Generator for Probabilistic Risk Assessment Tools: Enhancing

Testing, Verifying and Learning, ANS PSA [14].

• Facilitating PRA Model Accessibility: Model Converter Utility from SAPHIRE to

Open-PSA, ANS PSA [13].

• Probability Estimation using Monte Carlo Simulation of Boolean Logic on Hardware-

Accelerated Platforms, ANS PSA [40].

1.4.5 Theses & Dissertations

Graduate theses that have benefited from, and contributed to, the tooling or datasets

developed in this project.

• Asmaa Salem Amin Aly Farag, Benchmarking Study of Probabilistic Risk Assessment

Tools Using Synthetically Generated Fault Tree Models: SAPHSOLVE, XFTA, and

SCRAM, Master of Science, Department of Nuclear Engineering, NCSU, 2023 [45].

• Egemen Mutlu Aras, Enhancement Methodology for Probabilistic Risk Assessment Tools

through Diagnostics, Optimization, and Parallel Computing, Doctor of Philosophy,

Department of Nuclear Engineering, NCSU, 2024 [19].

• Hasibul Hossain Rasheeq, [Working Title] Design and Implementation of a Distributed

Queuing System for PRA Quantification, Master of Science, Department of Nuclear

Engineering, NCSU, Expected 2025 [65].

We now turn to the theoretical foundations underpinning the remainder of the work.
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Part I

Foundations
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Chapter 2

The Triplet Definition of Risk

A central goal of risk analysis in nuclear engineering is to enable sound decision-making under

large uncertainties. To achieve this, risk must be defined in a way that is both rigorous and

practically quantifiable. One widely accepted definition, tracing back to seminal work in [55,

48], frames risk as a set of triplets. Each triplet captures three essential dimensions:

1. What can go wrong?

2. How likely is it to happen?

3. What are the consequences if it does happen?

In more formal terms, let

R =
{
〈Si, Li, Xi〉

}
c

(2.1)

where R denotes the overall risk for a given system or activity, and the subscript c emphasizes

completeness: ideally, all important scenarios must be included. In this notation:

• Si specifies the ith scenario, describing something that can go wrong (e.g. an initiating

event or equipment failure). Typically, Si ∈ S, where S is the set of all possible scenarios.

• Li (sometimes denoted pi or νi) is the likelihood (probability or frequency) associated

with scenario Si. In other words, Li ∈ [0, 1] if modeled as a probability, or Li ∈ [0,∞)
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if modeled as a rate/frequency.

• Xi characterizes the consequence, i.e. the severity or nature of the outcome if the

scenario occurs. Consequences can range from radiological releases and economic cost

to broader societal impacts. In some analyses, Xi is a single-valued metric in X ; in

others, it may be treated as a distribution over possible outcomes in X .

The notation {·}c in Eq. (2.1) stresses that all substantial risk scenarios must be included.

Omitting a significant scenario might severely underestimate total risk. One might ask,

“What are the uncertainties?” In this dissertation, uncertainties are embedded in each Li

(and sometimes Xi) via probability distributions.

2.1 A Scenario-Based Approach

A practical way to enumerate each triplet 〈Si, Li, Xi〉 is through logical decomposition of

potential failures or disruptions, a process referred to as scenario structuring. Scenario

structuring helps answer the question “What can go wrong?” in greater detail by dividing

possible scenarios into commonly recognized classes. Each of these categories corresponds

to a distinct family of initiating events (IE) that can trigger a chain of subsequent events

or failures. At each node in the success scenario, we identify the IEs, which branch off from

the initial success path S0 into new pathways that may lead to undesirable states. Thus,

each scenario Si can be interpreted as a distinct departure from the baseline success path,

triggered by some IE that occurs at node i. From that point onward, a sequence of conditional

events or barriers may succeed or fail, culminating in an end-state ESi.

2.2 Definition of an Event Tree

An Event Tree (ET) unravels how a single initiating event (I) can branch into multiple possible

end-states (X) through a sequence of functional (or conditional) events. Each branch captures
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the success or failure of an important functional event (e.g. a safety barrier or operator

intervention). By following all possible paths, one can systematically account for each final

outcome Xj. Figure 2.1 provides a schematic view of this process for an initiating event I

and two subsequent functional events, F1 and F2. Each terminal node (leaf) corresponds to a

distinct end-state, denoted X1, X2, . . . , Xn. Though this illustration is intentionally simple,

more complex systems may include numerous functional events, each branching into further

outcomes.

I

F fail
1 X3

F succ
1

F fail
2 X2

F succ
2 X1

Figure 2.1: Illustrative event tree with an initiating event I, two functional events F1 and
F2, and three end-states X1, X2, X3.

At the highest conceptual level, an event tree is a collection of conditional outcomes. Let

n be a positive integer, and let j range over some index set of end-states J . Then the scenario

pathways can be defined as:

Γ =
{
〈I, F1, F2, . . . , Fn, Xj〉 : j ∈ J

}
, (2.2)

where:

• I is the initiating event. In a nuclear system, this could be an abnormal occurrence

such as a coolant pump trip or an unplanned reactivity insertion.

• Fk (k = 1, . . . , n) denotes the kth functional (conditional) event, which may succeed

(F succ
k ) or fail (F fail

k ). Typically, each Fk depends on the outcomes F1, . . . , Fk−1.

• Xj is an end-state, describing the final outcome along a particular branch. End-states
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might indicate safe shutdown, core damage, or a radiological release.

Each tuple 〈I, F1, . . . , Fn, Xj〉 in Γ encapsulates a distinct scenario pathway. In the broader

context of the risk triplet, such a pathway corresponds to Si, the possibility of something

going wrong, while the associated probability and consequences map directly to Li and Xi.

2.3 Definition of a Fault Tree

A Fault Tree (FT) is a top-down representation of how a specific high-level failure can arise

from malfunctions in the components or subsystems of an engineered system. It is typically

drawn as a tree or a Directed Acyclic Graph (DAG) whose unique root node is the top event

and whose leaves/basic events capture individual component failures or other fundamental

causes. This hierarchical decomposition proceeds until all relevant failure modes are captured

in the leaves or else grouped as undeveloped events.

Formally, the nodes of a fault tree can be divided into two main categories:

• Events, which denote occurrences at different hierarchical levels.

– A Basic Event (BE) represents the lowest-level failures, typically single-component

malfunctions or individual human errors. They are often depicted as circles or

diamonds in diagrams.

– Intermediate events indicate the outcome of one or more lower-level events. Though

intermediate events do not change the logical structure of the FT analysis, they

can greatly enhance clarity by grouping sub-failures into a meaningful subsystem

label (e.g., Cooling subsystem fails). They are typically drawn as rectangles.

– Top event (TE) is a single node, unique in the tree, that represents the high-level

failure of interest (e.g., System fails).

• Gates, which describe how events combine to produce a higher-level event. Each gate

outputs a single event (often an intermediate or the top event), based on one or more
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input events.

Because a fault tree traces failures up toward the top event, the overall structure becomes

a DAG. If a particular event (basic or intermediate) is relevant to multiple subsystems, it can

be shared among the inputs of different gates. Consequently, while many small FTs have a

pure tree shape, complex systems generally produce shared subtrees, yielding a more general

DAG. If a system is large, detailed modeling of every component may not be warranted. In

such cases, one may simplify certain subsystems by treating their failures as single undeveloped

events. An undeveloped event is effectively a basic event for analysis purposes, even though it

may internally comprise several components. This method conserves complexity where the

subsystem is either of negligible importance or insufficiently characterized to break down

further.

A convenient formalization, explained in detail in [72], treats an FT as a structure

F = 〈B,G, T, I〉 where the unique top event t belongs to G, and:

• B is the set of basic events.

• G is the set of gates or internal nodes.

• T → GateTypes: assigns a gate type (AND, OR, k/n, etc.) to each gate in G.

• I → P(B∪G): specifies the input set of each gate, i.e. which events (basic or intermediate)

feed into that gate.

The graph is acyclic and has a unique root (the top event t) that is reachable from all

other nodes. If an element is the input to multiple gates, it may be drawn once and connected

multiple times or duplicated visually; either way, the logical semantics remain the same.

Interpreting a fault tree involves examining which higher-level events fail when a subset

S of basic events has failed. Let πF (S, e) denote the failure state (0 or 1) of element e when

the set S ⊆ B of basic events has failed. Then:

15



• For each basic event b ∈ B:

πF (S, b) =


1, b ∈ S,

0, b /∈ S.

• For each gate g ∈ G with inputs {x1, . . . , xk} ⊆ B ∪ G:

πF (S, g) =



k∧
i=1

πF (S, xi), if T (g) = AND,

k∨
i=1

πF (S, xi), if T (g) = OR,

1 − πF (S, xi), if T (g) = NOT (single input),

k∑
i=1

πF (S, xi) ≥ k, if T (g) = VOT(k/n),

( k∑
i=1

πF (S, xi)
)
mod 2, if T (g) = XOR,

The top event t (i.e., TE) is a gate in G; it is common to write simply πF (S) to denote

whether the top event fails under the set S of failed BEs.

2.3.1 Definition of k-of-n Voting Logic

A k-of-n gate, denoted VOT(k/n), outputs 1 if and only if at least k of its n inputs equal 1.

Such a gate, often referred to as a threshold or majority voting gate, conveniently models

partial redundancy and majority-vote mechanisms. Concretely, let each of the n input events

be represented by a binary variable:

X1, X2, . . . , Xn ∈ {0, 1}.
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The gate’s output Y is then defined by

Y =


1, if

n∑
i=1

Xi ≥ k,

0, otherwise.
(2.3)

Equivalently, Y = 1 can be expressed as a disjunction of conjunctions:

Y =
[ n∑
i=1

Xi ≥ k
]

=
∨

S⊆{1,...,n}
|S|=k

(∧
i∈S

Xi

)
, (2.4)

meaning that at least one subset S ⊆ {1, . . . , n} of size k has all its corresponding Xi set to

1. Any larger subset |S| > k naturally satisfies the same condition.

2.3.2 Common-Cause Failures

A Common-Cause Failure (CCF) is defined as the failure of multiple components due to

a shared cause within a specified time interval. Unlike independent failures, CCFs can

defeat redundancy-based safety systems, potentially leading to severe consequences in critical

applications. Several parametric models have been developed to quantify CCF probabilities:

2.3.2.1 Basic Parameter Model (BPM)

Common Cause Component Groups (CCCG) are sets of components susceptible to the same

CCF mechanisms. Basic parameter model decomposes the failure probability of a component

in a CCCG into terms involving independent failure of the component and combinations

of CCFs with the other components in the CCCG [68]. For a group of m components, the

parameter Qk represents the probability of a specific k-component failure combination. The

total failure probability is then calculated as:

QT =
m∑
k=1

(
m− 1

k − 1

)
Qm

k
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While conceptually straightforward, this model becomes impractical for large component

groups due to the number of parameters required.

2.3.2.2 Alpha Factor Model (AFM)

The Alpha Factor Model develops CCF probabilities from set of failure ratios and the total

component failure probability [68]. For a system with m components, the alpha factors are

defined as:

αk =
nk∑m

i=1 i · ni

where nk is the number of events with k failed components. The probability of a specific

failure combination is then:

Qk =
αk(
m−1
k−1

) ·QT

The Alpha Factor Model is particularly useful because its parameters have direct statistical

meaning and can be estimated from operational data.

2.3.2.3 Multiple-Greek Letter (MGL) Model

Multiple Greek Letter model is used for systems with higher level of redundancy or k-out of-n

logic. The multiple Greek letter model includes parameters for the conditional probabilities

that the N+1-th subsystem fails given that N identical subsystems have already failed [54].

The key parameters are:

• β: Conditional probability that a component fails due to a common cause, given that

another component has failed

• γ: Conditional probability that a third component fails, given that two components

have failed due to a common cause

• δ, ε, ...: Additional parameters for larger component groups
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For a three-component system, the common cause failure probabilities are:

Q1 = QT (1− β)

Q2 = QTβ(1− γ)

Q3 = QTβγ

2.3.2.4 Binomial Failure Rate (BFR) Model

The Binomial Failure Rate (BFR) model is based on the concept of two distinct types of

shock events affecting components in a CCCG:

1. Lethal shocks occur at constant rate λ(i) and cause simultaneous failure of all compo-

nents in the CCCG.

2. Non-lethal shocks occur at constant rate ν and cause each component to fail inde-

pendently with probability p.

Each component in an CCCG has a total dependent failure rate of:

λc = λ(i) + pν (2.5)

The model uses binomial probability distribution to calculate the rate of failures with dif-

ferent multiplicities. When a non-lethal shock occurs, the probability of exactly k components

failing follows the binomial distribution:

P(k) =
(
n

k

)
pk(1− p)n−k (2.6)

Therefore, the rate of CCF events with exactly k components failing is:

λG,k = ν

(
n

k

)
pk(1− p)n−k (2.7)
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The BFR model has the advantage of using physically interpretable parameters (ν and p)

while requiring fewer parameters than the Basic Parameter Model.

2.3.2.5 Beta Factor Model

A simplified single-parameter model where all common cause failures are assumed to fail all

components in the group. The model uses a single parameter β, representing the fraction of

total failure probability attributed to common causes:

QI = QT (1− β) (independent failures)

Qm = QTβ (complete common cause failure)

This model is useful for initial screening and when data is limited.

2.3.2.6 Mapping Between Models

Relationships exist between the parameters of different CCF models, allowing conversion of

parameters from one model to another. For example, the Alpha factors can be derived from

MGL parameters as:
α1 =

1− β
1 + β(γ − 1)

α2 =
2β(1− γ)

1 + β(γ − 1)

α3 =
3βγ

1 + β(γ − 1)

Industry databases such as the International Common Cause Failure Data Exchange

(ICDE) [1] and the NRC’s CCF database [59] provide valuable sources for parameter estima-

tion.
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2.4 Quantifying Event Sequences

Because risk analysis requires knowing how likely each branch in the tree is, event trees rely

heavily on conditional probabilities. Let

p(I) ≡ Pr(I)

be the probability (or frequency) of the initiating event. For each functional event Fk, define

p
(
F succ
k | I, F1, . . . , Fk−1

)
and p

(
F fail
k | I, F1, . . . , Fk−1

)
,

which describe the likelihood of success or failure given all prior outcomes.

An end-state Xj arises from a particular chain of successes/failures:

(
I, F α1

1 , Fα2
2 , . . . , F αn

n

)
−→ Xj,

where each αk ∈ {succ, fail}. The probability of reaching Xj is the product of:

1. The initiating event probability p(I).

2. The conditional probabilities of each functional event’s success or failure.

Formally, if ωj denotes the entire branch leading to end-state Xj, then

p(ωj) = p(I)×
n∏

k=1

p
(
Fαk
k | I, F

α1
1 , . . . , F

αk−1

k−1

)
. (2.8)

Equation 2.8 shows that an event tree can be represented by a product (logical AND) of the

relevant Boolean variables for the initiating event and each functional event’s success/failure.

The union of all the branches spans the full sample space of scenario outcomes generated by

I and the subordinate functional events. Collecting all branches via logical OR in this way
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yields a disjunction of these products, precisely matching the standard structure of a Boolean

expression in Disjunctive Normal Form (DNF). This idea is explored further in Section 4.2.3.

2.4.1 Exact Methods for Calculating Probabilities

Beyond describing which combinations of basic events can fail, most Fault Tree Analysis

(FTA) requires a quantitative assessment of the likelihood that the top event ultimately occurs.

This section details how probabilities are embedded within the fault tree structure, how

to compute the top event’s failure probability (or system unreliability), and some common

methods for handling large or dependent fault trees.

2.4.1.1 Assigning Probabilities to Basic Events

Let B = {b1, . . . , bn} be the set of basic events in the fault tree F . Each basic event b is

associated with a failure probability p(b) ∈ [0, 1]. Interpreted as a Boolean random variable

Xb, event b takes value 1 (failure) with probability p(b) and value 0 (success) with probability

1− p(b). Thus,

Pr
[
Xb = 1

]
= p(b), Pr

[
Xb = 0

]
= 1− p(b).

In the simplest single-time analysis, each basic event is either failed or functioning for the

entire time horizon under study, and no component recovers once it has failed.

2.4.1.2 Event Probability Under Independence

If we assume that all basic events fail independently, then for any set S ⊆ B of failed basic

events,

Pr
[
basic events in S fail and others succeed

]
=
∏
b∈S

p(b) ×
∏
b/∈S

[1− p(b)].

Recall from Section 2.3 that the top event T (also called TE) fails given S precisely if

πF (S, T ) = 1. Hence, the probability that the top event fails is the sum of these independent

22



configurations S for which πF (S, T ) = 1:

Pr
[
Xt = 1

]
=
∑
S⊆B

[
πF (S, T )

∏
b∈S

p(b)
∏
b/∈S

[
1− p(b)

]]
. (2.9)

A direct computation of (2.9) often becomes unwieldy for large FTs because of the exponential

number of subsets S. However, if the fault tree is simple (no shared subtrees) and each gate

in G has independent inputs, one may propagate probabilities bottom-up through the DAG

using basic probability rules:

Pr[g = 1] =
∏

x∈I(g)

Pr[x = 1], if gate g is AND,

Pr[g = 1] = 1 −
∏

x∈I(g)

[
1− Pr[x = 1]

]
, if gate g is OR,

Pr[g = 1] = 1 − Pr[x = 1], if gate g is NOT (single input x),

Pr[g = 1] =

|I(g)|∑
j=k

∑
A⊆ I(g)
|A|=j

∏
x∈A

Pr[x = 1]
∏

x∈I(g)\A

[
1− Pr[x = 1]

]
, if gate g is VOT(k/n),

Pr[g = 1] =
∑

A⊆ I(g)
|A| is odd

∏
x∈A

Pr[x = 1]
∏

x∈I(g)\A

[
1− Pr[x = 1]

]
, if gate g is XOR.

2.4.1.3 Inclusion-Exclusion: Probability Computation under Independence

When each Xi is modeled as a Bernoulli random variable taking the value 1 with probability

pi = P (Xi = 1),

assumed independent of the other inputs, one can write for each k-element subset S ⊆

{1, . . . , n}:

AS =
∧
i∈S

{Xi = 1}, P
(
AS

)
=
∏
i∈S

pi.
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The event Y = 1 in Eq. (2.4) is the union of all such events AS for |S| = k. Hence, in principle,

to compute

P
(
Y = 1

)
= P

( ∨
|S|=k

AS

)
,

one may apply the inclusion-exclusion principle. Specifically:

P
( ∨
|S|=k

AS

)
=
∑
|S|=k

P (AS) −
∑

1≤α1<α2≤M

P
(
ASα1

∩ ASα2

)
+ . . . (2.10)

where M =
∑n

j=k

(
n
j

)
is the total number of events AS of interest. Unfortunately, direct

enumeration of these intersections can become infeasible for large n.

2.4.1.3.1 Worst-Case Example using 3-of-5 Voting Logic In many PRA tools, the

VOT(k/n) gate is provided as a built-in element. Internally, these tools may expand Eq. (2.4)

into an OR-of-ANDs or maintain a more compact representation. Under independence

assumptions, standard failure-probability calculations proceed by summing over combinations

of basic-event failures. However, an explicit expansion incurs the combinatorial factor

(
n

k

)
+

(
n

k + 1

)
+ . . . +

(
n

n

)
,

which can grow quickly as n increases. For example, consider the case where k = 3, n = 5.

Using the notation from Section 2.3.1, the compressed form of the gate output is

Y = VOT(3/5)
(
X1, X2, X3, X4, X5

)
=
[
X1 +X2 +X3 +X4 +X5 ≥ 3

]
.

Y

X1X2X3X1X2X4X1X2X5X1X3X4X1X3X5X1X4X5X2X3X4X2X3X5X2X4X5X3X4X5X1X2X3X4X1X2X3X5X1X2X4X5X1X3X4X5X2X3X4X5X1X2X3X4X5

Figure 2.2: 3-of-5 voting logic, expanded as (AND-OR) Disjunctive Normal Form (DNF)
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Since “at least 3 of 5” means any subset of size 3, 4, or 5 suffices, an explicit OR-of-ANDs

expansion has the following terms:

Y = X1X2X3 ∨ X1X2X4 ∨ X1X2X5 ∨ X1X3X4 ∨ X1X3X5 ∨ X1X4X5 ∨ X2X3X4 ∨ X2X3X5 ∨ X2X4X5 ∨ X3X4X5︸ ︷︷ ︸
subsets of size 3

∨ X1X2X3X4 ∨ X1X2X3X5 ∨ X1X2X4X5 ∨ X1X3X4X5 ∨ X2X3X4X5︸ ︷︷ ︸
subsets of size 4

∨ X1X2X3X4X5︸ ︷︷ ︸
subset of size 5

.

(2.11)

Assume that each Xi is a Bernoulli random variable taking the value 1 with probability

pi, independently of the others. Then

pi = P
(
Xi = 1

)
, i = 1, 2, 3, 4, 5.

We seek P (Y = 1), i.e., the probability that at least three of the Xi are 1. A convenient way

to write this is to sum, for j = 3, 4, 5, the probabilities that exactly j of the inputs are 1:

P
(
Y = 1

)
=

5∑
j=3

∑
S⊆{1,2,3,4,5}

|S|=j

∏
i∈S

pi
∏
i/∈S

(1− pi).

Exactly three of the five inputs are 1 (there are
(
5
3

)
= 10 such terms):

p1p2p3 (1−p4) (1−p5) + p1p2p4 (1−p3) (1−p5) + p1p2p5 (1−p3) (1−p4) +

p1p3p4 (1−p2) (1−p5) + p1p3p5 (1−p2) (1−p4) + p1p4p5 (1−p2) (1−p3) +

p2p3p4 (1−p1) (1−p5) + p2p3p5 (1−p1) (1−p4) + p2p4p5 (1−p1) (1−p3) +

p3p4p5 (1−p1) (1−p2).
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Exactly four of the five inputs are 1 (there are
(
5
4

)
= 5 such terms):

p1p2p3p4 (1−p5) + p1p2p3p5 (1−p4) + p1p2p4p5 (1−p3)

+ p1p3p4p5 (1−p2) + p2p3p4p5 (1−p1).

All five inputs are 1 (there is
(
5
5

)
= 1 such term):

p1p2p3p4p5.

Summing all of the above terms yields P (Y = 1), the fully expanded probability of a

3-of-5 vote under independence.

2.4.1.3.2 Complexity of the Inclusion-Exclusion Approach Observe that the union

in Eq. (2.10) comprises M events, where

M =
n∑

j=k

(
n

j

)
.

The inclusion-exclusion principle for a union of M events involves sums of intersections of

size r, for r = 1, . . . ,M . The total number of terms is

M∑
r=1

(
M

r

)
= 2M − 1,

which implies a worst-case computational complexity on the order of

O
(
2M
)
.

Moreover, for k ≈ n/2, the binomial coefficients
(
n
k

)
become largest, so M can itself grow

exponentially in n. Consequently, the inclusion-exclusion expansion may require up to O
(
22

n)
operations for moderately large n.
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2.4.2 Methods for Approximating Probabilities

2.4.2.1 The Rare-Event Approximation

When each basic event (b) has a sufficiently small failure probability (p(b)), the likelihood of

multiple minimal cut sets failing simultaneously is often negligible. Under these conditions,

one may approximate the failure probability of the top event by treating each Minimal Cut

Sets as though it fails independently. Specifically, let MCS(T ) denote the set of all minimal

cut sets that either have cardinality up to some truncation value (T ) or exceed a chosen

probability threshold. Then one replaces the exact summation over all MCS by summing

only over MCS(T ), yielding

Pr
[
Xt = 1

]
≈

∑
C∈MCS(T )

∏
b∈C

p(b). (2.12)

This approach is justified in highly reliable systems where multi-cut-set failures have low

probability. Moreover, it reduces the computational burden by screening out higher-order or

low-probability minimal cut sets. The choice of (T ) typically adheres to engineering practice:

for example, in a system designed to tolerate any single failure (often referred to as (N − 1)

redundancy), all minimal cut sets of size up to (N − 1) might be considered while larger cut

sets, deemed improbable, are excluded.

2.4.2.1.1 Error Bound for Truncated Approximations A natural way to measure

the quality of a truncated approximation is by comparing it to the exact probability of

top-event failure. Denote the exact probability by

Pr
[
Xt = 1

]
,
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and the truncated approximation, which sums only over the minimal cut sets in MCS(T ), by

Pr
T

[
Xt = 1

]
=

∑
C∈MCS(T )

∏
b∈C

p(b).

Then the error associated with truncation up to (T ) is

∆(T ) = Pr
[
Xt = 1

]
− Pr

T

[
Xt = 1

]
. (2.13)

Under the assumption that failures are sufficiently rare and interactions among higher-order

minimal cut sets are negligible, an upper bound for this error may be obtained by summing

the omitted terms: ∣∣∆(T )
∣∣ ≤ ∑

C∈MCS\MCS(T )

∏
b∈C

p(b). (2.14)

In practice, computing ∆(T ) or its bound usually requires identifying and evaluating all

minimal cut sets outside MCS(T ), which may still be tractable if the omitted sets are large,

unlikely, or both. Consequently, choosing a suitable truncation parameter, T (by size or

probability threshold), ensures that the unaccounted failure modes contribute negligibly to

the overall system unreliability.

2.4.2.2 The Min-Cut Upper Bound

Another method for bounding the probability of a top event interprets system failure as the

union of all minimal cut set (MCS) failures. The most direct upper bound is obtained by

applying the union bound (Boole’s inequality), which states that the probability of the union

of events is no greater than the sum of their individual probabilities. For a set of minimal cut

sets C = {C1, C2, . . . , Cm}, where each Ci is a set of basic events, the union bound yields:

Pr [Xt = 1] ≤
∑

C∈MCS

∏
b∈C

p(b), (2.15)
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where p(b) is the probability of basic event b.

However, most modern PRA tools, including SAPHIRE [78], implement a slightly tighter

upper bound, known as the minimal cut set upper bound, which is given by:

Pr [Xt = 1] ≤ 1−
∏

C∈MCS

[
1−

∏
b∈C

p(b)

]
. (2.16)

This expression accounts for the fact that the system fails if any cut set fails, and thus

computes the probability that at least one cut set occurs, assuming independence between

cut sets. It is always at least as large as the true probability, and is generally less conservative

than the simple union bound, especially when cut sets overlap.

The min-cut upper bound is exact if and only if all minimal cut sets are mutually disjoint

(i.e., share no basic events). In practice, cut sets often overlap, leading to double counting of

shared failure modes and thus a conservative overestimate. This bound remains valid regardless

of the magnitude of the basic event probabilities, unlike the rare-event approximation, which

assumes that cut set failures are nearly disjoint and probabilities are small.

For illustration, consider a fault tree with three minimal cut sets [77]: C1 = {A,B},

C2 = {B,C}, and C3 = {D}, with p(A) = p(B) = p(C) = 0.7 and p(D) = 0.5. The min-cut

upper bound is:

Pr(X) ≤ 1− [1− p(A)p(B)] [1− p(B)p(C)] [1− p(D)] (2.17)

= 1− (1− 0.49)(1− 0.49)(1− 0.5) (2.18)

= 1− (0.51)(0.51)(0.5) (2.19)

= 1− 0.13005 = 0.86995. (2.20)

This value is a conservative estimate of the true top event probability.
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2.4.3 Probability Estimation using Monte Carlo Sampling

Monte Carlo methods provide a versatile framework for approximating expectations, probabil-

ities, and other quantities of interest by simulating random observations from an underlying

distribution. At its core, a Monte Carlo estimator uses repeated random draws to approximate

quantities such as

E[f(X)] =

∫
f(x) p(x) dx ≈ 1

N

N∑
i=1

f
(
x(i)
)
, (2.21)

where x(1), x(2), . . . , x(N) are independent and identically distributed (i.i.d.) samples drawn

from p. The function f is a measurable function of the random variable X. In reliability and

PRA contexts, f might be an indicator of a particular event (e.g., a system failure), in which

case E[f(X)] becomes the probability of that event.

2.4.3.1 Convergence and the Law of Large Numbers

A central theoretical result underpinning Monte Carlo sampling is the Law of Large Numbers

(LLN). In one of its classical forms, the Strong LLN states:

Theorem 1 (Strong Law of Large Numbers). Let X1, X2, . . . be a sequence of i.i.d. random

variables with finite expectation E[X1]. Then, with probability 1,

lim
N→∞

1

N

N∑
i=1

Xi = E[X1].

Applied to the sample estimator in Eq. (2.21), the LLN implies that as the number

of samples N grows large, the average of the function values f
(
x(i)
)
converges to E[f(X)].

Thus, by simply drawing enough samples, one can approximate probabilities or expectations

arbitrarily well (with probability 1).
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2.4.3.2 Central Limit Theorem and Error Analysis

Another classical result is the Central Limit Theorem (CLT), which indicates that the Monte

Carlo estimator’s distribution (around its true mean) approaches a normal distribution for

large N . Specifically,

Theorem 2 (Central Limit Theorem). Suppose X1, X2, . . . are i.i.d. random variables with

mean µ = E[X1] and variance σ2 = V[X1] <∞. Then the sample mean satisfies

√
N

(
1

N

N∑
i=1

Xi − µ
)

d−→ N (0, σ2),

where d−→ denotes convergence in distribution.

In practical terms, the Central Limit Theorem (CLT) implies that for sufficiently large

N , the sampling fluctuations of the Monte Carlo estimator around the true mean are

approximately normal. The variance of this normal distribution decreases with 1/N . Therefore,

one can estimate confidence intervals, standard errors, and convergence rates by tracking

empirical variance across the sample.

The above principles remain valid even when f is an indicator of a Boolean event or a

composite system failure embedded in an event/fault tree. One need only be able to draw

samples
(
x(i)
)
from the system’s joint distribution over basic events (or from any suitable

representation of the PRA model) and then evaluate the function f to determine system

success/failure for each sample. Subsequent chapters will expand on how these samples can

be generated for event trees, fault trees, or more complex DAG-based representations.

2.4.3.3 Generating Random Numbers

Monte Carlo estimators rely on the ability to generate random realizations from a given

distribution. Computers, however, do not typically provide true randomness; instead, they

use Pseudo Random Number Generator (PRNG)s to produce sequences of numbers that
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mimic realizations from a uniform distribution on [0, 1]. From these uniform samples, one

can then derive samples from more general distributions using various transformations (e.g.,

the inverse transform method, acceptance-rejection, composition methods, or specialized

sampling algorithms).

A PRNG is formally a deterministic function that, given an initial seed, generates a long

sequence of values in (0, 1). Popular choices include:

• Linear Congruential Generators (LCG), which use a recurrence of the form

Xn+1 = (aXn + c) mod m,

then normalize Xn+1

m
to produce a pseudo-random variate in (0, 1).

• Mersenne Twister , which generates high-quality pseudo-random numbers with a very

long period (e.g., 219937 − 1).

• Philox or other counter-based methods that deliver high performance and reproducible

streams across parallel computations.

While these methods provide deterministic sequences, strong design ensures that the

resulting outputs pass numerous statistical tests for randomness. If the seed is chosen randomly

(or from a secure source), these methods can approximate uniformity closely enough for most

Monte Carlo studies.

2.4.3.3.1 Random Variates via Transformations Given access to uniform samples

U ∼ Unif(0, 1), one can construct samples from many other distributions. Two widely used

techniques are:

1. Inverse Transform Sampling: Suppose a continuous variable X has Cumulative

Distribution Function (CDF) FX(x). If U ∼ Unif(0, 1), then X = F−1
X (U) follows the
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same distribution as X. More precisely,

P
[
X ≤ x

]
= P

[
F−1
X (U) ≤ x

]
= P

[
U ≤ FX(x)

]
= FX(x),

provided FX is continuous and strictly increasing.

2. Acceptance-Rejection: For certain distributions where the inverse CDF is not straight-

forward, one can sample from an easier proposal distribution q(x) that bounds the

targeted density p(x). Specifically, if p(x) ≤M q(x) for all x, then:

(a) Draw Y ∼ q(·) and Z ∼ Unif(0, 1).

(b) Accept Y if Z ≤ p(Y )
M q(Y )

. Otherwise, reject and repeat.

The accepted sample Y follows distribution p(x).

2.4.3.3.2 Boolean Events as Discrete Random Variables Many variables are discrete,

often Bernoulli (success/failure) or categorical (e.g. multiple failure modes). Generating {0, 1}-

valued samples is then straightforward, since for each basic event b,

Pr[b = 1] = p(b), Pr[b = 0] = 1− p(b).

Given a uniform variate U , one sets

b =


1, U ≤ p(b),

0, otherwise.

This approach naturally extends to multi-categorical events. More complex dependencies

among events can also be captured by specifying appropriate conditional distributions.

2.4.3.3.3 Extending Boolean Events to Continuous Random Variables A contin-

uous random variable Y has a Probability Density Function (PDF) fY (y) on a continuous
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domain Y ⊆ R. Common examples in reliability include:

• Exponential Distribution, often used to model times to failure under a constant

hazard rate λ. Its PDF is

fY (y) = λ e−λy, y ≥ 0.

• Weibull Distribution, with flexible shape parameter β > 0 and scale parameter

α > 0. Its PDF is

fY (y) =
β

α

( y
α

)β−1

exp
[
−
(
y/α

)β]
, y ≥ 0.

• Lognormal Distribution, where log(Y ) follows a normal distribution. This is some-

times employed for components whose lifetimes span multiple orders of magnitude.

Continuous random variables typically arise when modeling the time dimension: for instance,

the time until a valve sticks closed, or the moment when a pipe experiences a critical crack.

One can then generate a Bernoulli indicator for whether the failure has occurred by time t

using

Pr[Y ≤ t] =

∫ t

0

fY (y) dy = FY (t),

where FY is the Cumulative Distribution Function (CDF) of Y . Evaluating this probability

at each Monte Carlo trial and comparing against a uniform random variate yields a discrete

failure indicator. Hence, continuous distributions can be mapped to discrete states at any

chosen time horizon.

2.5 Generating Cut Sets and Implicants

Once the fault tree or event tree model has been constructed, the qualitative phase of risk

characterization begins. The objective is to identify unique combinations of basic events

that are of interest because they either cause the top event (system failure) or guarantee its
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prevention (system success). These combinations are formalized by the logic concepts defined

below.

Implicants are general combinations of events (either failure or success) that satisfy the

top event. Cut sets are specialized implicants containing only failure events that cause system

failure. Path sets are specialized implicants of the complement function (T ) containing only

success events that ensure system operation. Minimal cut sets are prime implicants containing

only failure events, representing the minimal ways the system can fail. Maximal path sets

are prime implicants of T containing only success events, representing the maximal ways the

system can operate successfully.

2.5.1 Implicants

Let T (x) be the Boolean top event function of the model and I ⊆ {x1, . . . , xn} be a set of

basic events. A set I is an implicant of T if

T (1I) = 1

where 1I is the truth vector that sets the basic events in I to true. Implicants can contain

both failure and success events depending on the analysis context.

• Cut set: An implicant containing only failure events.

• Path set: The complement of an implicant containing only success events.

2.5.1.1 Prime Implicants

A prime implicant P is an implicant that is not a subset of any other implicant. Formally, P

is a prime implicant if:

1. T (1P ) = 1

2. ∀P ′ ⊂ P, T (1P ′) = 0
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2.5.1.2 Essential Prime Implicants

An essential prime implicant π is a prime implicant that contains at least one minterm that is

not covered by any other prime implicant, i.e., there exists at least one basic event a such that

T (a) = 1 and a satisfies π but does not satisfy any other prime implicant of T . This property

guarantees that π must appear in every irredundant disjunctive normal form representation

of T .

2.5.2 Path Sets

A path set P is a set of success events such that when all events in P occur, the system

operates successfully. If T represents the complement of the top event function (system

success), then:

T (1P ) = 1 where P contains only success events

2.5.2.1 Maximal Path Sets

A maximal path set is a path set to which no basic event can be added while still ensuring

system success. A path set X is maximal if:

1. T (1X) = 1

2. ∀x /∈ X,T (1X∪{x}) = 0

Maximal path sets represent the largest combinations of component successes that guarantee

system operation.

2.5.3 Cut Sets

A cut set C is an implicant containing only failure events such that when all events in C

occur, the system fails. Formally, for a Boolean function T representing the top event:

T (1C) = 1 where C contains only failure events
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2.5.3.1 Minimal Cut Sets

A minimal cut set is a cut set which causes the failure of the system, but when a basic event

is removed from the cut set, it does not cause system failure anymore [3]. A cut set M is

minimal if:

1. T (1M) = 1

2. ∀M ′ ⊂M,T (1M ′) = 0

Minimal cut sets represent the smallest combinations of component failures that can cause

system failure.

2.5.3.2 Method for Obtaining Minimal Cut Sets (MOCUS)

Originally proposed by Fussell and Vesely in 1974 [47], the MOCUS algorithm remains one of

the most widely deployed techniques for top-down generation of minimal cut sets in PRA

tools. The procedure starts from the top event of a fault tree and repeatedly expands each

logic gate until only basic events remain.

Let the following symbols be defined:

• w identifier of a logic gate

• ϕ identifier of a basic event

• ρw,i i-th input to gate w

• λw fan-in (number of inputs) of gate w

• ∆x,y entry located at row x, column y of the Boolean Indicated Cut Sets (BICS) matrix

• xmax (ymax) current maximum row (column) index in ∆
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2.5.3.2.1 Recursive expansion Starting with ∆1,1 = wTOP, every occurrence of a gate

identifier is eliminated via the following transformation rules:

∆x,y = ρw,1, (2.22)

∆x,ymax+1 =



ρw,π, if w is an AND gate,
∆x,n, n = 1, . . . , ymax, n 6= y,

ρw,π, n = y,

if w is an OR gate.
(2.23)

with π = 2, 3, . . . , λw. Equation (2.22) seeds the matrix, while Equation (2.23) generates new

columns (AND) or rows (OR) until all w symbols have been replaced by ϕ symbols, thereby

producing the complete set of BICS.

Two refinement steps convert BICS to MCS:

1. Remove duplicate basic events within each row.

2. Discard any BICS that is a superset of another BICS.

G1

G2

X1G3

X2X3

G4

X2X4

Figure 2.3: Sample fault tree for MOCUS demonstration [19].

Table 2.1 summarizes the sample fault tree by matching the formulas provided for the

algorithm.
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Table 2.1: Structural data for the sample fault tree in Figure 2.3.

w Gate type λw ρw,i

G1 AND 2 G2 G4

G2 OR 2 X1 G3

G4 OR 2 X2 X4

G3 AND 2 X2 X3

Figure 2.4 schematically depicts the evolution of the ∆x,y matrix for the fault tree in

Figure 2.3.

After gate expansion, elimination of duplicates (e.g. event X2) and removal of supersets

(e.g. {X2, X4, X3}) yield the MCS family:

{
{X1, X2}, {X2, X3}, {X1, X4}

}
.

Although algorithmically elegant, the recursive nature of MOCUS can incur considerable

computational overhead for large, deeply nested fault trees. Nonetheless, virtually every PRA

tool integrates some variant of MOCUS for minimal cut-set calculation.

2.6 Computing Importance Measures

Importance measures quantify the contribution of basic events to system reliability or risk.

They provide insights into which components or events are most critical to system performance,

guiding resource allocation for maintenance, design improvements, and risk management.

PRA tools typically calculate the following importance measures to support comprehensive

reliability analysis.

2.6.1 Conditional Importance

The Conditional Importance (CI) of a basic event i measures the probability that event i

contributes to system failure, given that the system has failed. It represents the fraction of
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Figure 2.4: Schematic representation of MOCUS algorithm application to the sample fault
tree [19].
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system failures that involve the basic event.

CIi =
P (i contributes to system failure | system failure)

P (system failure)
=

P (i critical)
P (system failure)

This is calculated by identifying minimal cut sets containing the basic event and deter-

mining the proportion of failure probability attributed to these cut sets.

2.6.2 Marginal Importance

The Marginal Importance (MI), also known as Birnbaum importance, measures the rate

of change in system reliability with respect to the reliability of component i. It quantifies

how sensitive the system failure probability is to changes in the failure probability of the

component.

MIi =
∂P (system failure)

∂P (i fails)
= P (system fails | i fails)− P (system fails | i succeeds)

This is computed by evaluating the difference in system failure probability when the

component is assumed failed versus successful.

2.6.3 Potential Importance

The Potential Importance (PI) measures the maximum possible reduction in system failure

probability that could be achieved by improving component i. It indicates the potential

benefit of perfect reliability for a component.

PIi = P (system failure)− P (system failure | i succeeds) = P (system failure)× (1− 1

RRWi

)
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This is calculated using the system failure probability under current conditions compared

to the system failure probability when the component is perfectly reliable.

2.6.4 Diagnostic Importance

The Diagnostic Importance (DI) measures the probability that component i has failed, given

that the system has failed. It is useful for fault diagnosis and identifying likely causes of

system failure.

DIi =
P (i fails | system fails)

P (i fails)
=

P (i fails ∩ system fails)
P (i fails)× P (system fails)

This is calculated by determining the conditional probability of component failure given

system failure, normalized by the component’s failure probability.

2.6.5 Criticality Importance

The Criticality Importance (CRI) combines the Marginal Importance with the probability of

component failure. It measures the contribution of component i to the overall system failure

probability.

CRIi = MIi×
P (i fails)

P (system fails)
=
P (i fails)× [P (system fails | i fails)− P (system fails | i succeeds)]

P (system fails)

This is computed by multiplying the Marginal Importance by the ratio of component

failure probability to system failure probability.

2.6.6 Risk Achievement Worth

The Risk Achievement Worth (RAW) measures the factor by which system failure proba-

bility increases when component i is assumed to have failed. It indicates the importance of
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maintaining the current reliability of the component.

RAWi =
P (system fails | i fails)

P (system fails)

RAW is computed by comparing the system failure probability when the component is

assumed failed to the baseline system failure probability.

2.6.7 Risk Reduction Worth

The Risk Reduction Worth (RRW) measures the factor by which system failure probability

decreases when component i is assumed perfectly reliable. It indicates the potential value of

improving component reliability.

RRWi =
P (system fails)

P (system fails | i succeeds)

RRW is calculated by comparing the baseline system failure probability to the system

failure probability when the component is assumed perfectly reliable.
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Chapter 3

Probabilistic Circuits

3.1 Boolean Functions

Let x = (x1, x2, . . . , xn) be a vector of n Boolean variables, where each xi ∈ {0, 1}. A Boolean

function is a map

F (x) = F (x1, x2, . . . , xn) ∈ {0, 1}. (3.1)

This function takes each possible configuration of x (i.e., each element of {0, 1}n) to a single

binary output in {0, 1}. Boolean functions appear throughout digital logic, circuit design,

and a wide range of computational applications.

For illustration, we can visualize small Boolean functions based on the size of x. For n = 1,

there are two possible input states:

x1 = 0 x1 = 1

For n = 2, the four possible states can be positioned on a 2D lattice:

(0, 0) (1, 0)

(0, 1) (1, 1)
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In three dimensions (n = 3), the eight possible states correspond to the vertices of a cube:

(0, 0, 0) (1, 0, 0)

(0, 1, 0) (1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)

Boolean operators such as AND (∧), OR (∨), and NOT (¬) allow constructing a wide

variety of logical relationships. For example, in a setting where a system fails if any one of

two components fails, the Boolean function can be written as

F (xA, xB) = xA ∨ xB.

Here, F = 1 precisely when xA = 1 or xB = 1, encompassing a failure event if either component

A or B is in state 1. More complex systems with many interdependent components may

require Boolean functions with numerous variables and deeply nested operators.

Although Boolean functions are crucial for representing logical configurations, they operate

purely in a binary framework and do not directly encode probability distributions. To include

probabilistic behavior, we can move to a more expressive framework called probabilistic

circuits, which describe the distribution of variables in a directed acyclic graph (DAG).

Such representations can capture both the combinatorial structure of system states and the

uncertainty or likelihood associated with these states.

3.2 Definition and Structure

Consider a set of random variables X = (X1, X2, . . . , Xn). A probabilistic circuit C is a DAG

whose nodes consist of:
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• Input nodes (leaves): Each leaf encodes a base distribution over some subset of X.

Often, these leaves correspond to univariate distributions p(Xi) or constant/indicator

functions.

• Internal nodes (gates): Each gate combines incoming distributions from its children

using either:

– Sum-gates (mixture gates): Weighted sums of child distributions, with non-

negative weights summing to 1.

– Product-gates: Factorized products of child distributions, each child covering

disjoint subsets of X.

The acyclic nature of the graph ensures that information flows consistently from the leaves

toward a designated root node.

3.2.1 Sum-Gates and Product-Gates

Let v be an internal node in C. Denote the children of v by ch(v). Then:

• Sum-gate: Suppose v has children u1, . . . , uk with mixture weights {θv,ui
}ki=1 satisfying∑k

i=1 θv,ui
= 1 and θv,ui

≥ 0. The distribution encoded at v is

pv(x) =
k∑

i=1

θv,ui
pui

(x), (3.2)

where pui
(x) is the distribution encoded by child node ui.

• Product-gate: Suppose v has children u1, . . . , uk, each covering disjoint subsets of X.

Let X =
⋃k

i=1 Xui
and Xui

∩Xuj
= ∅ for i 6= j. Then the distribution at v is

pv(x) =
k∏

i=1

pui

(
xui

)
, (3.3)

where xui
is the restriction of x to the variables in Xui

.
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3.2.2 Leaf Nodes and the Circuit Distribution

Each leaf node encodes a base distribution over its subset of variables (or a constant/indicator).

Let v be a leaf node associated with pv(Xv). When the circuit is evaluated, each leaf contributes

its assigned distribution or constant term. By recursively composing sum-gates and product-

gates, every node v in the circuit defines a distribution pv(x). The distribution of the entire

circuit is given by evaluating its root node r:

pr(x) = (r evaluated from the leaves up).

Probabilistic circuits unify structural and probabilistic modeling in a single formalism.

They are widely used in fields such as artificial intelligence, machine learning, and auto-

mated reasoning, offering a tractable way to represent complex, high-dimensional probability

distributions while preserving interpretable, compositional structure.

3.3 Connection to Probabilistic Risk Assessment

Chapters 2.2–4.1 introduce event–tree and fault–tree logic and show how their inter–connec-

tions form a unified probabilistic directed acyclic graph (PDAG). That PDAG is, in fact, a

specialized probabilistic circuit:

• The leaf distributions are the Bernoulli failure variables of basic events (and, later,

common–cause variables).

• Internal OR / AND / voting gates correspond to deterministic product– or sum–gates

whose mixture weights are restricted to {0, 1}.

• Event–tree branching is expressed through sum–gates with non-trivial weights θu→v

that encode the conditional probabilities of functional events.
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Framing PRA models as probabilistic circuits brings three advantages that motivate the

developments in subsequent chapters:

(a) Unified semantics. Both logical determinism and stochastic branching coexist in one

mathematical object, enabling end–to–end inference without shuttling between separate

“logic” and “probability” representations.

(b) Compiler compatibility. Decades of work on knowledge compilation for circuits

(§18.2) becomes directly applicable, informing the eight-level transformation pipeline

adopted in Chapter 18.

(c) Sampling tractability. The layered Monte-Carlo kernels of Part III exploit the

decomposability of product–gates to evaluate entire batches in parallel, while sum–gates

inject controlled stochasticity that preserves unbiasedness (Chapter 14).

With this perspective, the remainder of Part I can be read as instantiating general circuit

concepts with the domain-specific structure of nuclear PRA models. Chapter 4 will leverage

that instantiation to formalize quantitative risk assessment as a problem of knowledge

compilation over probabilistic circuits, setting the stage for the data-parallel algorithms

analyzed in Parts III and IV.
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Chapter 4

Quantitative Risk Assessment as

Knowledge Compilation

The traditional PRA modeling language—with its separate constructs for Initiating Events,

Event Trees, and Fault Trees—was devised for human readability and incremental model

construction. Those distinctions help engineers reason about failure propagation and refine a

model’s granularity, yet they also fragment information across heterogeneous data structures.

For small systems this heterogeneity is innocuous; for today’s models containing hundreds of

event trees and thousands of fault trees it becomes a barrier to scalable analysis, impeding both

exact probability calculations and qualitative queries such as minimal-cut-set enumeration.

To overcome these limitations we advocate translating the entire model into a single

probabilistic directed acyclic graph (PDAG). The transformation is loss-free, deterministic,

and yields a representation that is simultaneously human-verifiable and machine-amenable.

Once in PDAG form the model enjoys three key benefits: (i) a uniform graph data structure

that supports high-performance algorithms for probability estimation and structural queries,

(ii) compatibility with knowledge-compilation techniques that enable selective normal-form

transformations, and (iii) the ability to accommodate incremental design changes through

lightweight graph updates.
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The remainder of this chapter explains the PDAG construction, illustrates the mapping on

the running example of Fig. 4.1, and shows how classical PRA operations can be re-expressed

as graph traversals or as queries over a propositional knowledge base. This perspective not

only clarifies the formal semantics of PRA models but also lays the groundwork for the

data-parallel Monte-Carlo methods developed in later chapters.

In this section, we will show how these requirements can be achieved by viewing risk models

as Probabilistic Directed Acyclic Graph (PDAG). We show how PDAG model maps on PDAG

and how standard PRA methods can be viewed as operations on graphs. Furthermore, we

show how PDAGs can be viewed as collections of propositional logic statements — knowledge

bases. This view provides fundamental mathematical rigor to PRA formalism, by casting

PRA methods as queries over and transformation of aforementioned knowledge bases. Not

only this formalism provides strong computational bounds and guarantees for the algorithms

of interest, but it also explicitly separates the preparation and analysis steps of PRA model,

allowing for efficient separation and querying.

4.1 Risk Models as Probabilistic Directed Acyclic Graphs

Up to this point, we have introduced ETs to capture the forward evolution of scenarios and

FTs to capture the top-down decomposition of system failures. In a full-scale PRA, many

ETs and FTs are linked to form a single overarching model. The goal is to represent:

1. The branching structure of multiple event trees, which may feed into one another

(ET→ET),

2. Multiple fault trees that themselves can reference or be referenced by other FTs

(FT→FT),

3. Event trees that invoke fault trees to quantify key failure probabilities (ET→FT), and

similarly fault trees whose outcome may direct the next branch or state in an event

tree.
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Figure 4.1: A working example: Starting with an initiating event (I), an event tree (ET)
with three linked fault trees (FT), and shared basic events (FT), and five end states (ES).

51



All of these interconnections can be consolidated into a single PDAG. In broad terms, its nodes

stand for either (i) ET nodes (initiating or functional events), (ii) FT gates or intermediate

events, or (iii) basic events.

4.1.1 Basic Structure and Notation

Let us denote:

• {Γ1,Γ2, . . . ,ΓM} as the collection of event trees, where each Γi may represent a different

initiating event or system phase. Every Γi is itself structured as in Section 2.2, with a

set of node events and directed edges (success/failure branches).

• {Φ1,Φ2, . . . ,ΦN} as the collection of fault trees, each built according to Section 2.3.

Every Φj has a unique top event, an acyclic arrangement of gates (AND, OR, voting,

etc.), and a set of basic events.

In a large PRA, any ET Γi may:

• Lead to another ET Γk under certain branch outcomes (ET→ET).

• Include a branch that requires computing “System X fails” via a fault tree Φj (ET→FT).

Similarly, a fault tree Φj may:

• Contain the top event of another fault tree Φk as one of its inputs (FT→FT).

• Generate an outcome (e.g. subsystem fails) that triggers a branch in some event tree Γi.

These inter-dependencies can be organized into a single PDAG, denoted

M =
(
V , A

)
,

where:
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• V is the set of all nodes in the unified model. Each node v ∈ V has a type indicating

whether it belongs to an event tree (ET-node), a fault tree (FT-gate), or is a Basic

Event (BE).

• A ⊆ V×V is the set of directed edges. Each (u, v) ∈ A signifies a logical or probabilistic

dependency from node u to node v.

By design,M is acyclic: no path loops back through the same node. This condition prevents

paradoxical definitions of probabilities or statements (e.g., an event that depends on itself).

4.1.2 Nodes and Their Inputs

We partition V into three principal categories:

1. Basic Events (BEs). Let B ⊂ V be the set of all basic events across all FTs. Each

b ∈ B is associated with a failure probability p(b) ∈ [0, 1]. A node b in the PDAG has

no incoming edges (i.e., it is a leaf source for the rest of the logic).

2. Fault Tree (FT) Nodes. Let G ⊂ V be the set of internal FT-gates or intermediate

FT-events, unified across {Φ1, . . . ,ΦN}.

• Each FT node g ∈ G has one output event g (the node itself in the PDAG).

• The set of inputs to g may include basic events B (e.g., component failures) and/or

other FT nodes G (subsystem-level events). If g is the top event of Φj, then it

may appear as an input into a different FT’s gate or an ET node.

• As with standard FT logic, each gate has a type in {AND, OR, VOT(k/n), . . .}.

Its output (failure state) is a Boolean function of its inputs’ failure states.

3. Event Tree (ET) Nodes. Let E ⊂ V be the set of ET-nodes, each referring either to

an initiating event (IE) or to a functional event within some event tree Γi.
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• An ET node e in Γi can have multiple outgoing edges, each labeled by a partic-

ular outcome (e.g., success/failure). These edges may lead to another ET node

(continuing the same event tree), to the root/top event of a fault tree (to evaluate

subsystem reliability), or even to the root of a different event tree (ET→ET).

• As in Section 2.2, each outgoing branch from e has an associated conditional

probability, conditioned on the event e itself having occurred.

Hence,

V = B︸︷︷︸
basic events

∪ G︸︷︷︸
FT nodes

∪ E︸︷︷︸
ET nodes

,

and every node v in V has an input set

I(v) ⊆ B ∪ G ∪ E = V \ {v},

indicating which nodes feed into v. By the PDAG property, v cannot be an ancestor of itself.

4.1.3 Edge Types and Probability Assignments

Each directed edge (u, v) ∈ A belongs to one of several categories:

• ET → ET edges. [Transfers] These edges connect an ET node u ∈ E to another

ET node v ∈ E within the same tree Γi or leading to a subsequent tree Γk. In typical

diagrams, these edges denote if u occurs, then with probability θu→v we transition to

v. Probabilities on all child edges of u sum to 1, reflecting the partition of possible

outcomes.

• ET → FT edges. [Functional Events] These edges represent the case where an ET

node u ∈ E designates Check if subsystem Φj has failed. Formally, the next node v ∈ G

is the top event (or relevant subsystem event) in fault tree Φj. The probability of v

failing is not assigned directly on the edge but is computed via the logical structure of

Φj.
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• FT → FT edges. [Transfer Gates] Such edges arise when the top event (or an

intermediate gate) u ∈ G of one fault tree is input to a gate v ∈ G in another fault tree.

For instance, if Φ1 captures the failure mode of a pump and Φ2 captures the failure of

a coolant subsystem that includes that same pump’s top event.

• FT → ET edges. [Initiating Events] Less common but still possible are edges that

carry an outcome of a fault tree node u ∈ G to an ET node v ∈ E . For instance, an

initiating event might depend on whether a certain subsystem fails, as computed by a

separate FT Φj. Support system FTs are one such example.

• BEs as sources (no incoming edges). Each basic event b ∈ B has probability p(b) of

failing, so Pr[Xb = 1]=p(b). These do not have incoming edges because they represent

fundamental failure modes, not dependent on other events within the model.

Denote by θu→v the conditional probability weighting an ET-type edge (u→ v). If node u

splits into children v1, . . . , vk, then

k∑
i=1

θu→vi = 1, θu→vi ≥ 0.

By contrast, FT-type edges do not carry numerical probabilities directly. Instead, a gate node

v ∈ G aggregates its inputs’ fail/success states via Boolean logic (AND, OR, VOT(k/n), etc.)

to yield πM(S, v) ∈ {0, 1}, the node v’s failure state under a set S of basic-event failures.

4.1.4 Semantics of the Unified Model

A full scenario inM extends from a designated initial node (often an initiating event I ∈ E)

forward through whichever ET or FT edges are triggered. Because no cycles exist, every

path eventually terminates in either (a) an ET leaf (end-state), (b) a top event that is not

expanded further, or (c) a final subsystem outcome deemed not to propagate further risk.
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4.1.4.1 Failure States in the Fault Trees.

For any subset S ⊆ B of basic events that fail:

1. Each b ∈ B fails iff b ∈ S.

2. Each FT node g ∈ G has failure state πF (S, g) determined by the usual fault tree

semantics (Section 2.3).

That is, a node g in a fault tree Φj is in failure mode when its logical gate type indicates

failure is activated by the failures of its inputs (which might be other gates or basic events).

4.1.4.2 Branching in the Event Trees.

Whenever an ET node e ∈ E is reached, outgoing edges {(e → e1), (e → e2), . . . } partially

partition the scenario space. The choice of which child ei is realized is probabilistic, with

probabilities θe→ei .

4.1.4.3 Event-Tree to Fault-Tree Links.

If an edge (e→ g) connects an ET node e to a fault tree top event g ∈ G, the scenario path

triggers the question Does g fail? The probability that g is in failure, conditional on having

arrived at node e, is determined by the set S ⊆ B of basic events that happen to fail in that

scenario plus the gate logic of Φj.

Altogether, scenario outcomes inM thus combine:

• XB = {Xb : b ∈ B}, where Xb ∈ {0, 1} indicates whether basic event b fails or not, and

• A chain of ET decisions or fault-tree outcomes, traveling through the PDAG until

reaching a terminal node.

If all basic events are assumed independent with probabilities {p(b)}, then the global likelihood

of a specific path ω from an initiating event I to a final outcome (and with a particular

pattern of success/failure across B) factors into products of:
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1. The product of
∏

b∈S p(b) ×
∏

b/∈S[ 1− p(b) ] for the relevant S ⊆ B.

2. The product of all ET-edge probabilities θu→v encountered along the path (u ∈ E).

3. The logical constraints from each visited fault tree node g ∈ G, which impose πF (S, g) ∈

{0, 1} in or out of failure.

Summing over all valid paths (or equivalently over all subsets S ⊆ B and the result of each

ET/FT branching) yields the total system risk measure, such as the probability of a severe

radiological release, or the probability that a certain undesired top event emerges.

4.1.5 Formal Definition of the Unified Model

Bringing these elements together, we propose the following definition:

Definition 1 (Unified PRA Model). A unified PRA model is a Probabilistic Directed Acyclic

Graph (PDAG)1

M =
〈
V = B ∪ G ∪ E , A, p(·), πF

〉
with the following properties:

1. B is the set of basic events, each b ∈ B failing with probability p(b). These nodes have

no incoming edges in M.

2. G is the set of Fault Tree nodes, each representing a gate or intermediate event in a

fault tree. For g ∈ G, the function

πF (S, g) =


1, if fault-tree logic declares g fails under S ⊆ B,

0, otherwise.

1Whether the “P’’ in PDAG is “probabilistic’’ or “propositional’’ is, appropriately, still a probabilistic
proposition, so we’ll invoke whichever flavor suits the moment.
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3. E is the set of Event Tree nodes, each having zero or more outgoing edges. If node e

has children {v1, . . . , vk} ⊂ V, then the edges {(e→ vi)}ki=1 carry probabilities θe→vi ≥ 0

summing to 1.

4. A ⊆ (V × V) is the set of directed edges. An edge (u→ v) can be:

• ET→ ET: event-tree branching,

• ET→ FT: an event tree referencing a fault tree’s top event,

• FT→ FT: linking one fault tree node to another’s input,

• FT→ ET: an FT outcome passed back to an event tree node,

• BE→ ∅: no edges emanate from a basic event node.

5. The graph M is acyclic: no path in A returns to a previously visited node.

4.1.6 Operations on Probabilistic Directed Acyclic Graphs

In practice, we anticipate large nuclear PRAs to contain hundreds of event trees and thousands

of fault trees, sharing many basic events or subsystem-level fault trees. By embedding them

inM, one can systematically compute probabilities for any high-level risk measure (e.g., core

damage, large release) by enumerating scenario paths or using specialized algorithms (e.g.

binary decision diagrams, minimal cut set expansions, or simulation-based techniques). The

unified PDAG structure codifies both the forward scenario expansions (ET logic) and the

top-down sub-component dependencies (FT logic) without creating contradictions or cycles.

Definition 1 makes manifest which event tree references which fault tree, how fault trees are

chained together, and how basic events ultimately feed every higher-level node. Once built,

one may:

• Traverse each path from an initiating event to a final end-state, propelling forward

along the ET edges and evaluating any FT nodes via πF .
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Figure 4.2: A unifying representation of a Probabilistic Risk Assessment (PRA) model as a
Propositional Directed Acyclic Graph (DAG).
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• Find minimal cut sets and path sets by traversing the PDAG and making cuts

along the way.

• Sum (or bound, or approximate) scenario probabilities to quantify overall risk.

• Perform sensitivity analyses by biasing subsets of basic-event probabilities p(b) or

gate dependencies.

All standard PRA methods (minimal cut sets, Monte Carlo simulation, bounding formulas,

etc.) remain applicable, but now from within a single unified PDAG representation.

4.2 Transformations

4.2.1 Knowledge Compilation

Casting PRA model as PDAG allows to view the model a set of boolean propositional

statements. Thus, any question that can be asked about the system, can be seen as a general

reasoning (queries or transformations) over the knowledge base, defined by the propositional

statements. A common approach to dealing with such problems is knowledge compilation.

Knowledge Compilation has emerged as a significant direction of research for addressing the

computational intractability inherent in general propositional reasoning tasks. This approach,

which has a long tradition in reasoning Artificial Intelligence, was notably structured and

analyzed in the work of Darwiche and Marquis. KC fundamentally involves splitting the

reasoning process into two distinct phases:

1. An off-line compilation phase: In this initial phase, a knowledge base (represented,

for instance, as a propositional theory or formula) is transformed or ”compiled” into a

different representation, referred to as a tractable form, or target language. The target

language is specifically chosen because it supports certain desirable properties, such as

tractability for specific queries (questions) or allowing polynomial time evaluation.
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2. An on-line query-answering phase: Once compiled, the resulting target represen-

tation is utilized to answer queries efficiently. The goal is for these query answering

procedures to be polynomial time with respect to the size of the compiled representation.

The primary rationalization behind this two-phase approach is to shift as much of the

computational overhead as possible into the off-line compilation phase. While the

compilation step itself can be computationally hard, this initial cost is amortized over the

potentially large number of subsequent on-line queries. This amortized cost makes the overall

reasoning process more efficient when multiple queries are anticipated on the same knowledge

base.

4.2.2 Negation Normal Form (NNF)

The field of knowledge compilation operates primarily on a subset of boolean expression that

conform to a set of properties. In general, imposition of more properties results increased

tractability of the queries, i.e. answering questions becomes easier, however, at the cost of the

size of boolean expression. The primary “workhorse” of Knowledge compilation is Negation

Normal Form (NNF).

Boolean Negation Normal Form (NNF) is a syntactic restriction for Boolean formulas such

that negations (NOT operators) are applied only directly to variables and not to compound

subformulas. Formally, a Boolean formula is in NNF if it is built from variables, their negations,

conjunctions (AND), and disjunctions (OR), where NOT appears only as part of literals.

A boolean expression in NNF can be represented as a rooted directed acyclic graph,

DAG. The leaf of the graph correspond to constants (0, 1) or literals (a, ¬b), presented in

the expression. The internal nodes of the DAG correspond to AND (∧) and OR (∨) gates.

Internal gates cannot be associated with NOT gates.

In the context of knowledge compilation, NNF serves as a foundational target language.

Knowledge bases compiled into NNF allow efficient model checking and form the basis for

further restricted normal forms like Conjunctive Normal Form (CNF), Disjunctive Normal
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Form (DNF), Decomposable Negation Normal Form (DNNF), or Deterministic Decomposable

Negation Normal Form (d-DNNF). NNF enables subsequent transformations and reasoning

tasks to be performed with well-bounded complexity, as it ensures logical negation is “pushed

down” to the leaves of the formula’s parse tree, simplifying subsequent manipulations.

4.2.2.1 Properties of NNF

NNFs can be classified based on adherence to particular properties/restrictions. The set of

NNFs that adhere to a set of properties defines a representational language, L in Table 4.2.

4.2.2.1.1 Decomposability An NNF is decomposable if, at every conjunction (∧) gate,

the sets of variables feeding into the subformulas of its children are pairwise disjoint. That

is, for any ∧-node with children, the sets of variables involved in the subformulas rooted at

those children share no variables. Formally, for any ∧-node with children (α1, . . . , αn),

Vars(αi) ∩ Vars(αj) = ∅ ∀i 6= j

This property ensures tractable consistency checking and supports efficient computation on

the representation. The language of DNNF comprises those NNFs that are decomposable.

4.2.2.1.2 Determinism An NNF is deterministic if, at every disjunction (∨) gate, the

sets of models (i.e., assignments that make the subformulas true) computed by its children

are mutually exclusive–no single assignment satisfies more than one child. Zero-overlap of

assignments between children guarantees tractable model counting. Determinism together

with decomposability yields Deterministic Decomposable Negation Normal Form (d-DNNF),

which enables polytime validity, implicant, and model counting queries. Sentential Decision

Diagram (SDD)s are a strict subset of d-DNNF with additional structure.
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4.2.2.1.3 Smoothness An NNF is smooth if, at every disjunction (∨) gate, all children

depend on the same set of variables (atoms). That is, for every OR-node, the set of variables

in each child’s subformula is identical. Smoothness simplifies certain operations in knowledge

compilation and ensures that the models of disjuncts are over a fixed set of variables.

Smoothness can always be enforced on any DNNF in polynomial time without affecting

succinctness. Smooth/Structured Deterministic Decomposable Negation Normal Form (sd-

DNNF) enforces decomposability, determinism, and smoothness.

4.2.2.1.4 Flatness An NNF is flat if the circuit/tree has height at most two: the root is

an AND or OR, and the children are literals or simple conjunction/disjunctions of literals.

Both CNF and DNF are examples of Flat Negation Normal Form (f-NNF): In CNF, the root

is AND, its children are ORs of literals (clauses); in DNF, the root is OR, its children are

ANDs of literals (terms). Flatness restricts structural complexity and further subclasses are

defined by additional properties: for instance, CNF requires each clause to have no repeated

variables, and DNF requires each term to have unique variables.

4.2.2.2 Summary

The following sections explore common target languages that find uses in Knowledge Com-

pilation and can be used in PRA. For each selected language we note it’s main properties,

construction algorithms, and tractable queries available for this languages. We focus on the

following:

1. CNF — the most well-studied form, ubiquitous in solving SAT problem.

2. DNF — a form that naturally renders itself for Event Tree analysis and acts as a

precursor for more sophisticated essential prime implicant search.

3. BDD, ZDD, SDD — most tractable target languages, featured in the majority of

practical applications.
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This is not an exhaustive list. It’s intention is to provide a summary of rigorous formalism

that can find uses in Probabilistic Risk Assessment (PRA).

1

2

3

4

5

6

7

8

9

10

Boolean Expression

NNF XAG

f-NNF DNNF d-NNF AIG RNF

CNF DNF s-DNNF d-DNNF FPRM

PI IP/BCF PPRM

EPI EIP

sd-DNNF BDD

f-BDD

OBDD

SDD ROBDD

Figure 4.3: Hierarchy of compiled target languages. Blue nodes represent canonical forms.

Table 4.1: Compiled target languages, acronyms defined.

Acronym Full form

NNF Negation Normal Form

XAG XOR-And-Inverter Graph

AIG And-Inverter Graph

ANF/RNF Algebraic/Ring Normal Form

f-NNF Flat Negation Normal Form

DNNF Decomposable Negation Normal Form

d-NNF Deterministic Negation Normal Form
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Table 4.1: Compiled target languages, acronyms defined.

Acronym Full form

FPRM Fixed Polarity Reed-Muller

CNF Conjunctive Normal Form

DNF Disjunctive Normal Form

s-DNNF Smooth/Structured Decomposable Negation Normal Form

d-DNNF Deterministic Decomposable Negation Normal Form

sd-DNNF Smooth/Structured Deterministic Decomposable Negation Normal Form

PPRM Positive Polarity Reed-Muller

PI Prime Implicate

IP Prime Implicant

BCF Blake Canonical Form

EPI Essential Prime Implicate

EIP Essential Prime Implicant

BDD Binary Decision Diagram

f-BDD Free/Read-Once Binary Decision Diagram

OBDD Ordered Binary Decision Diagram

SDD Sentential Decision Diagram

RoBDD Reduced Ordered Binary Decision Diagram
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Table 4.2: Properties of selected target languages.

Property NNF CNF DNF DNNF d-DNNF SDD ROBDD

Decomposable > > > > >

Structured Decomposable > >

Deterministic > > > >

Strong Determinism > >

Smooth > >

Flat > >

Query Type

Consistency (CO) NP-c coNP-c polytime polytime polytime polytime polytime

Model Enumeration (ME) NP-c poly-delay poly-delay poly-delay poly-delay poly-delay poly-delay

Model Counting (CT) #P-hard #P-hard #P-hard #P-hard polytime polytime polytime

Equivalence (EQ) coNP-c coNP-c coNP-c coNP-c coNP-c polytime∗ polytime†

Conditioning polytime polytime polytime polytime polytime polytime polytime

Forgetting coNP-c. coNP-c. coNP-c. coNP-c. coNP-c. polytime NP-hard

Boolean Combination polytime polytime polytime polytime polytime polytime polytime

∗: SDD equivalence: polytime when compressed with a fixed vtree.

†: OBDD equivalence: polytime with fixed variable order.
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4.2.3 Disjunctive Normal Form (DNF)

4.2.3.1 Definition and Properties

Disjunctive Normal Form (DNF) is a classical representation language for propositional

theories. A DNF formula is a disjunction of terms, with each term being a conjunction of

literals (variables or their negations). Formally, a DNF formula has the form ( T1∨T2∨· · ·∨Tm

), where each ( Ti = li1∧ li2∧· · ·∧ lik ), with lij — a literal. DNF is a subset of NNF and more

specifically, a Flat Negation Normal Form (f-NNF). It is universal: any propositional theory

has a DNF representation. DNF is not canonical; equivalent functions may have different

DNF syntactic forms. Every DNF formula is also a DNNF but is not in general deterministic

(and thus not always a d-DNNF).

4.2.3.2 Construction

To construct a DNF, rewrite the propositional theory as a disjunction of conjunctions of

literals, with each term representing a possible partial assignment that satisfies the theory.

Mechanical conversion from other forms (such as CNF) to DNF can require exponential space

in the worst case. Applications DNF appears in:

1. Model-based diagnosis, where explicit representation of models is useful for enumerative

reasoning.

2. Knowledge compilation pipelines as a source or target language and as an intermediary

form in bottom-up compilation to tractable representations.

3. Problems requiring efficient model enumeration, such as explanation generation or

solution space exploration.
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4.2.3.3 Compilers and Implementations

4.2.3.3.1 Bottom-Up Compilation from DNF to OBDD/ SDD Each DNF term

(conjunction of literals) is individually compiled into the target structure ( OBDD or SDD).

Terms are then combined using the “Apply” (disjunction) function, which is polynomial-time

in the size of the operands.

1. OBDD Implementations: The CUDD package is a widely used library supporting OBDD

construction and manipulation, including efficient Apply operations.

2. SDD Implementations: The SDD package, by the authors of SDD, is the primary imple-

mentation for Sentential Decision Diagrams, fully supporting bottom-up compilation

and ”Apply”.

4.2.3.3.2 Top-Down Compilation Compilation algorithms initially designed for CNF,

such as Decision- SDD compilers, can also be used directly on DNF input. These compilers

operate recursively using principles from SAT solving, caching, and structural decomposition.

1. Actual Implementations: The SDD package and other SAT-based compilers (e.g., c2d

for DNNF compilation) can process DNF input, although their performance is generally

tuned for CNF.

No sources identify compilers specific to DNF-to- CNF conversion or tailored DNF-

to-DNF simplification outside of general boolean function minimization algorithms (such as

Quine-McCluskey or Espresso), which are not the focus of knowledge compilation pipelines.

4.2.3.4 Polynomial-Time Queries and Complexities

4.2.3.4.1 Consistency (CO) ( O(|∆|) ). Satisfiability is determined by checking that at

least one term contains no complementary literals.
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4.2.3.4.2 Model Enumeration (ME) Polynomial delay per model ( O(|Ti|) ) per model

for term ( Ti ). All models can be enumerated efficiently by expanding the terms.

4.2.3.4.3 Others All other standard queries (e.g., Validity [VA], Clausal Entailment [CE],

Model Counting [CT], Equivalence [EQ], etc.): Intractable unless ( P = NP ) or #P = FP

(e.g., Model Counting is #P -hard).

1. Validity (VA): co-NP-complete;

2. Clausal Entailment (CE): co-NP-complete;

3. Model Counting (CT): #P-hard.

DNF is a flat, non-canonical, universal language supporting tractable consistency checking

and model enumeration. It is commonly used as a source or intermediate representation in

compilation pipelines targeting OBDD, SDD, or related languages, with mainstream libraries

like CUDD and the SDD package implementing practical bottom-up compilation from DNF.

All other semantic queries, including entailment and model counting, are computationally

intractable.

Despite the aforementioned intractability, however, DNF find a unique place in PRA

analysis. A pure Even-Tree Diagrams can be represented as sum-or-products boolean formulas.

4.2.3.5 Event Tree Structures as Sum-Product Networks

Consider a specific branch ωj leading to the end-state Xj . By definition, ωj occurs if and only

if:

1. The initiating event I happens: i = 1.

2. For each functional event Fk, the branch specifies a particular outcome (success or

failure). Suppose ωj includes successes for some subset of indices α ⊆ {1, . . . , n} and
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failures for the complementary indices. We can write this as:

∧
k∈α

(
f succ
k = 1

)
∧

∧
k/∈α

(
f fail
k = 1

)
.

Hence, the branch event ωj is logically equivalent to a single product term:

ωj ≡
(
i = 1

)
∧
∧
k∈α

(
f succ
k = 1

)
∧
∧
k/∈α

(
f fail
k = 1

)
. (4.1)

In standard Boolean notation, each literal (e.g., f succ
k ) is a variable that can be 0 or 1, and

the branch is the ∧ (AND) of those variables. An event tree describing all possible outcomes

from I and the subsequent functional events can be viewed as the union (logical OR) of its

disjoint branches:

Ω = ω1 ∪ ω2 ∪ · · · ∪ ωm.

In Boolean terms, this is the ∨ (OR) of the product terms corresponding to each branch:

Ω ≡ ω1 ∨ ω2 ∨ · · · ∨ ωm. (4.2)

Substituting each branch’s conjunction form (as in Eq. (4.1)) into Eq. (4.2) yields:

Ω =
[
i ∧

∏
k∈α1

f succ
k ∧

∏
k/∈α1

f fail
k

]
∨
[
i ∧

∏
k∈α2

f succ
k ∧

∏
k/∈α2

f fail
k

]
∨ · · ·

where each αr is the set of functional events that succeed along branch r.

A standard DNF (SoP) expression in Boolean algebra is

(
literal1 ∧ literal2 ∧ · · ·

)
∨
(
literal′1 ∧ literal′2 ∧ · · ·

)
∨ · · ·

Each term in the sum (OR) is a logical AND of literals (variables or their negations).

Comparing with Eq. (4.2), we see that an event tree is exactly a disjunction of terms, each
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term being a conjunction of the initiating event i (set to 1) and the success/failure indicators

for each Fk. Since any negation can be encoded by stating whether Fk is succ (f succ
k = 1) or

fail (f fail
k = 1), the entire event tree Ω is in DNF:

Ω =
m∨
j=1

[ ∧
`∈Λj

(appropriate literal)
]
.

4.2.3.6 Tractability of Event Trees

Within SP−networks (sum-product networks), a sum gate provides a weighted sum of child

distributions, whereas a product gate factorizes them. An event tree can be cast as an

SP−network by feeding each branch’s literal probabilities into product gates (one per branch),

then summing over all branches with a sum gate. Once constructed, evaluating the resulting

SP−network at a specific configuration x or marginalizing out some of the variables is linear

in the size of that network. Nevertheless, the tractability of event trees (and their circuit

representations) heavily depends on their size and structure. We summarize several key

considerations below:

1. DNF size grows exponentially.

Suppose an event tree includes n functional events, each of which can succeed or fail.

In the worst case, enumerating all possible outcome branches (i.e. each success/failure

pattern) yields up to 2n conjunction terms. Hence, the disjunctive normal form (DNF)

representation can become exponentially large. Computing or marginalizing probabilities

over such a large DNF may become prohibitively expensive if n is large enough.

2. Evaluation linear in network size.

Even though the DNF itself may blow up exponentially, once the event tree is translated

into an SP−network, key inference tasks (such as evaluating it at a configuration or

marginalizing over certain variables) proceed in time linear in the compiled network

size. That said, if the underlying network has already reached exponential size in the
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number of events, the linear-time evaluation does not necessarily improve the overall

worst-case complexity.

3. Approximations abound.

In practice, analysts often employ approximations to keep event trees tractable. One

possibility is decomposability, a core principle behind tractable probabilistic circuits

whereby each product gate operates on disjoint sets of variables. If the system decom-

poses (e.g. different safety barriers protect disjoint sets of equipment), one can evaluate

probabilities without enumerating all branches. Another common approximation is to

prune paths with very low probabilities or ignore paths that only negligibly contribute

to the overall risk.

Fully enumerated event trees, regardless of being interpretable as DNF/SP networks, trade

tractability for expressivity. The intuitive branching structure and conditional probability

assignments make event trees easy to interpret. PRA analysts can read off and reason about

the high-level scenario decomposition, incorporate domain knowledge, and analyze each

branch explicitly. If the number of critical functional events is moderate, enumerating all

branches remains tractable. As the depth and breadth of the tree grow, any brute-force

probability computation over such a large DNF/SoP circuit is equally exponential in the

worst case. Even though SP−networks offer efficient linear-time evaluation with respect to

the circuit size, the underlying circuit itself may have size exponential in n.

4.2.4 Conjunctive Normal Form (CNF)

Conjunctive Normal Form (CNF) is a specific subset of f-NNF. CNF further restricts this

structure: a CNF formula is a conjunction of clauses, where each clause is a disjunction

of literals. Thus, every CNF is an NNF where the formula has depth at most two: a top-

level conjunction whose direct children are disjunctions of literals. Negations never apply to

anything except individual variables.
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Despite computational intractability of most queries, CNF is the dominant input language

for SAT solvers, which employ highly optimized heuristics far surpassing brute-force complexity

in practice. Many real-world verification, synthesis, and combinatorial search problems are

encoded as CNF for this reason.

4.2.4.1 Key Properties

4.2.4.1.1 Flatness As a formula or DAG, a CNF has depth at most two. The root is a

conjunction ∧ whose direct children are disjunctions ∨ of literals (leaf nodes).

4.2.4.1.2 Simple-disjunction All disjunctions operate directly on literals–there are no

nested or compound subformulas inside disjunctions.

4.2.4.1.3 Closure under conjunction The conjunction of two CNF formulas yields

another CNF formula.

4.2.4.1.4 Non-uniqueness CNF is not canonical. Logically equivalent formulas can have

very different CNF representations due to clause or literal redundancy, reordering, or other

syntactic differences.

4.2.4.2 Construction and Compilation

Constructing CNF from arbitrary Boolean formulas using Tseitin encoding or distributive

laws takes (O(|ϕ|)) time and space, potentially with introduction of auxiliary variables for

compactness. Any propositional formula can be converted to an equisatisfiable CNF using

methods such as Tseitin encoding, which can be performed in (O(|ϕ|)) time and size for a

formula (ϕ). This transformation ensures that the original and resulting CNF formulas have

the same satisfiability, though logical equivalence is not guaranteed.
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4.2.4.3 Query Complexity

4.2.4.3.1 Implicant Query (IM) Checking whether a term implies a CNF formula can

be done in (O(|term|+ |CNF|)) time.

4.2.4.3.2 Satisfiability (Consistency, CO) Determining satisfiability of a general CNF

formula is NP-complete; the best algorithms run in time (O(2n)) in the worst case, where (n)

is the number of variables, though modern SAT solvers perform much better in practice.

4.2.4.3.3 Validity (VA) Checking whether a CNF is a tautology is co-NP-complete. No

polynomial-time algorithm is known unless P = NP .

4.2.4.3.4 Prime Implicant Generation Extracting a single prime implicant from a

known model (an assignment satisfying the CNF) can be performed in polynomial time. This

process involves iteratively attempting to remove each literal from the model and checking

if the CNF remains satisfied. Each removal can be checked in time linear in the size of the

CNF, and all removals together give a total complexity of (O(|CNF| · |M |)), where M is the

model. With efficient algorithms, this task can be done in linear time.

1. Finding any model or implicant: Equivalent to SAT, and thus NP-complete.

2. Enumerating all prime implicants: Exponential time in the worst case; the number of

prime implicants can be exponential in formula size.

3. Recognizing essential prime implicants: NP-complete.

4.2.4.3.5 Model Counting (CT) Counting the number of satisfying assignments is

#P -complete. For a CNF with primal treewidth (w) and (n) clauses, model counting via

dynamic programming on a tree decomposition can be done in (O(n2w)) time when the

decomposition is given. For a CNF with incidence treewidth (w) and (N) tree decomposition
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nodes, counting can be done in (O(2w(kd+ δ)N)), where (d) is maximum variable degree,

(δ) is multiplication time.

4.2.4.3.6 Model Enumeration (ME) Enumerating all models is not feasible in polyno-

mial time in general, due to potentially exponential output size.

4.2.4.3.7 Clausal Entailment (CE), Equivalence (EQ), Sentential Entailment

(SE) All are co-NP-complete (or worse) in general for CNF.

4.2.4.4 CNF as a Source for Knowledge Compilation

CNF serves as the standard input for compilation into tractable reasoning languages:

4.2.4.4.1 CNF to DNNF With given decomposition tree of width (w) and (n) clauses,

can be compiled in (O(nw2w)) time and space. Complexity is singly exponential in treewidth

and linear in formula size when width is bounded.

4.2.4.4.2 CNF to d-DNNF Using tools like c2d and DSHARP, for CNF with incidence

treewidth (k) and size (n), can be compiled into DNNF of size (O(2kn)).

4.2.4.4.3 CNF to SDD For a CNF with (n) variables and vtree of width (w), bottom-up

compilation yields SDD of size (O(n2w)), and can be performed in (O(nw)) time if the vtree

is fixed.

4.2.4.4.4 CNF to OBDD Top-down approaches with caching result in size and time

(O(2pathwidth)) for OBDD, where pathwidth is a width measure related to treewidth.

4.2.4.5 Compilers

1. DNNF/d-DNNF: c2d, dsharp (output size (O(2widthn)))

2. RoBDD: CuDD, BuDDy (output size (O(2pathwidth)))
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3. SDD: SDD package (output size (O(n2w)))

4.2.5 Decomposable Negation Normal Form (DNNF)

Decomposable Negation Normal Form (DNNF) is a central target language in knowledge

compilation, representing a significant refinement of Negation Normal Form (NNF). In NNF,

every propositional sentence is represented as a directed acyclic graph (DAG): leaves are

labeled by literals (variables or their negations) or by the constants true/false, while internal

nodes are labeled by conjunction (∧) or disjunction (∨) operations. NNF allows unrestricted

subformula structure as long as negations only appear at the literal level, but on its own does

not provide tractability for key reasoning tasks unless P = NP.

4.2.5.1 Definition of DNNF and Related Forms

A formula is in DNNF if it is in NNF and satisfies the decomposability property: at every

conjunction (∧-node), the conjuncts mention disjoint sets of variables. Formally, if a conjunc-

tion node has children ϕ1, . . . , ϕm, then Var(ϕi) ∩ Var(ϕj) = ∅ for all i 6= j. This property

enables efficient independent evaluation of circuit branches.

• Deterministic DNNF (d-DNNF): Adds the determinism property. At every dis-

junction (∨-node), disjuncts are mutually contradictory (i.e., the conjunction of any

two child subcircuits is inconsistent). Determinism enables additional tractable queries,

such as model counting.

• Structured DNNF / Structured d-DNNF: These subclasses further restrict

DNNF/d-DNNF by requiring that decompositions reflect a hierarchical structure

(typically enforced by a vtree specifying the variable partitioning at each conjunction

or disjunction). This structured decomposability allows additional tractability (notably,

certain transformations), and forms the basis for languages like Sentential Decision

Diagrams (SDDs), which are strict subsets of structured d-DNNF.
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4.2.5.2 Construction and Compilation

Compiling an arbitrary propositional formula, often given in CNF or DNF, into DNNF or

d-DNNF is a central algorithmic task. For CNF inputs, one algorithm uses a decomposition

tree (related to variable treewidth). Given n clauses and treewidth w, d-DNNF can be

compiled in time and space O(nw2w); thus, for bounded treewidth, linear-sized d-DNNF

representations can be obtained in linear time. Practical compilers include C2D, DSHARP, and

d4. DSHARP, leveraging #SAT technology, frequently exceeds the speed of C2D while producing

similarly sized d-DNNF. OBDD representations for propositional theories can be converted

into equivalent DNNF in linear time relative to OBDD size.

4.2.5.3 Succinctness

Succinctness compares the minimum size of representations of the same function across

languages. The succinctness ordering (strict, unless the polynomial hierarchy collapses) is:

DNNF < d-DNNF < FBDD < OBDD < CNF/DNF

That is:

• DNNF (and its subclasses) are strictly more succinct than OBDDs.

• SDDs sit as a strict subset of structured d-DNNF.

• DNNF is generally more succinct than FBDDs, which are more succinct than OBDDs.

• CNF and DNF generally remain exponentially sized compared to DNNF for many

functions.

Smooth deterministic DNNF (sd-DNNF) is as succinct as d-DNNF.
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4.2.5.4 Supported Queries and Complexities

A principal utility of DNNF is to enable several queries in time polynomial to circuit size.

The main queries and their tractability status for DNNF and derivatives:

• DNNF:

– Consistency (CO): Polynomial time

– Clausal Entailment (CE): Polynomial time

– Model Enumeration (ME): Polynomial time; for sd-DNNF, output-linear time

• d-DNNF/structured d-DNNF:

– All above, plus:

– Validity (VA): Polynomial time

– Model Counting (CT): Polynomial time (linear for sd-DNNF)

– Model-based Diagnosis: Minimum-cardinality diagnosis, etc., in polynomial

time

– Implicant Checking (IM), Model Minimization: Polynomial time

– Equivalence Testing (EQ): Not known to be polynomial time for d-DNNF,

unlike OBDD

4.2.5.5 Empirical Benchmarks

Empirical results show a clear advantage for DNNF and d-DNNF in both size and compilation

efficiency versus OBDD on relevant AI tasks:

• Diagnoses compiled into DNNF are often orders of magnitude smaller than those into

OBDD.
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• Compilation time is generally faster with DNNF compilers (DSHARP is up to 27 times

faster on average than C2D, and both outperform OBDD compilation for relevant

model-based diagnosis inputs).

• Diagnostic and enumeration queries are more efficient on DNNF than OBDD, due to

reduced circuit size and higher tractability.

DNNF and its subclasses, notably d-DNNF and sd-DNNF, provide a foundational set

of tractable languages in knowledge compilation, balancing high succinctness with strong

support for key inference queries. Their compilation is practical for many instances, and

empirical results show clear advantages over OBDDs. SDDs and structured d-DNNFs offer

further tractable transformations at some cost in succinctness.

4.2.6 Decision Diagrams

Decision diagrams provide a powerful, directed-graph-based representation of logical or

Boolean functions. Their roots can be traced back to branching program ideas explored by

Lee and Akers in the 1950s–1970s, but major refinement and widespread adoption occurred

after Bryant’s seminal work on Ordered Binary Decision Diagrams (OBDDs) in 1986. In

reliability analysis, formal verification, and combinational circuit design, decision diagrams

frequently offer more computationally tractable methods than naïve enumeration of all input

patterns.

This section introduces the basic concepts of Binary Decision Diagrams (BDDs) and Zero-

Suppressed Decision Diagrams (ZDDs), along with the special class of Ordered and Reduced

BDDs that guarantee a canonical (unique) form under fixed conditions. We emphasize:

• The structure and interpretation of BDDs as directed acyclic graphs (DAGs).

• The notion of an ordered BDD, imposing a strict arrangement on variable testing.

• Techniques for reducing BDDs into smaller yet equivalent graphs by merging or removing

redundant parts.
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• The main principles of Zero-Suppressed Decision Diagrams, designed for efficiently

encoding sparse sets or combinatorial families.

Earlier, we saw that event trees and fault trees can be merged into a single directed acyclic

graph to represent complex system dependencies. BDDs and ZDDs, by contrast, focus more

narrowly on Boolean functions, providing specialized node-splitting and merging operations

to systematically capture logical behavior. Despite differing motivations, both families of

DAG-based representations benefit from the avoidance of cycles and the ability to encode

large models in a structured form.

4.2.6.1 Binary Decision Diagrams (BDD)

Let f : {0, 1}n → {0, 1} be an n-variable Boolean function. A Binary Decision Diagram

(BDD) is a directed acyclic graph whose internal nodes represent decisions on a single Boolean

variable, and whose terminal (sink) nodes represent constant outputs (0 or 1).

Definition 2 (Binary Decision Diagram). A Binary Decision Diagram for f is a tuple

B =
(
N,n0, V, E, T

)
with the following components:

1. N is a finite set of nodes, partitioned into internal nodes and terminal nodes.

2. n0 ∈ N is the root node, where evaluations begin.

3. V = x1, x2, . . . , xn is the set of Boolean variables associated with the internal nodes.

4. E ⊆ N × 0, 1×N is the edge set. Each internal node u has two labeled edges, (u, 0, v0)

and (u, 1, v1), indicating the next node in the diagram if xi = 0 or xi = 1 at node u.

5. T is a mapping that assigns the value 0 or 1 to each terminal node of B.

For any input a = (a1, a2, . . . , an) ∈ {0, 1}n one identifies a unique path from n0 to a terminal

node by at each internal node following the edge labeled by the tested variable’s value in a.

The value of f(a) is given by the terminal node reached, as encoded by T .
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Interpretation. Each internal node corresponds to a variable test: if the variable is 0 (i.e.

false), follow the 0-edge, and if it is 1 (true), follow the 1-edge. Eventually, one reaches a sink

node labeled false = 0 or true = 1.

4.2.6.1.1 Example. For the three-variable function f(a, b, c) = a ∧
(
b ∨ c

)
, Figure 4.4

shows a small BDD. Each circular node tests one variable a, b, or c; the dashed and solid

edges denote the 0- and 1-branches, respectively. Terminal nodes (squares) contain a 0 or 1

label.

a

b

c

1 0

0

1

0

1

01

Figure 4.4: A Binary Decision Diagram (BDD) for f(a, b, c) = a ∧
(
b ∨ c

)
.

In practice, BDDs may experience large variations in size depending on how variables are

tested as one traverses the graph. The ordered and reduced variants of BDDs are especially

important, as they yield canonical forms for fixed variable orderings.

Definition 3 (Ordered Binary Decision Diagram (OBDD)). An Ordered Binary Decision

Diagram (OBDD) imposes a strict ordering π on the variables x1, . . . , xn. For every path

from the root to a terminal node, if the path encounters variables xi and xj, then xi is tested

before xj whenever i < j with respect to π. Equivalently, no path may test a higher-indexed

variable and later test a lower-indexed one.
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OBDDs are also known as read-once branching programs with an ordering restriction.

Bryant showed that under a particular variable order, the representation is often more compact

than arbitrary BDDs and that many operations (e.g., equivalence checking, conjunction,

disjunction) can be carried out efficiently.

Definition 4 ([Reduced Ordered Binary Decision Diagram (RoBDD)). An OBDD is said to

be reduced if it contains no isomorphic subgraphs and no node whose 0- and 1-branches lead

to the exact same child. Equivalently, one applies two reduction rules:

1. Elimination Rule: If, for a given node v, the 0-edge and 1-edge both point to the

same successor, remove v and connect its incoming edges directly to that successor.

2. Merging Rule: If two distinct nodes u and v test the same variable and have identical

0- and 1-successors, merge them into a single node.

A Reduced Ordered Binary Decision Diagram (RoBDD) respects a global variable order π

and has been minimized via these rules.

Canonical Representation. One of the principal advantages of ROBDDs is that, for a

fixed variable ordering, every Boolean function has a unique representation. Consequently,

checking whether two functions are identical reduces to testing whether their ROBDDs

coincide as node- and edge-labeled graphs.

Theorem 3 (Canonical Form of RoBDDs). Let π be a fixed ordering on the variables

x1, . . . , xn. Then for any Boolean function f of n variables, its reduced OBDD with respect to

π is unique.

A direct consequence is that striving for reduced ordered forms both shrinks redundant

structure and supports robust equivalence checks.

4.2.6.2 Zero-Suppressed Decision Diagrams (ZDD)

For certain applications, notably combinatorial itemset enumeration and other sparse set

representations, Zero-Suppressed Binary Decision Diagram (ZDD) can be more compact than
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standard BDDs. Although ZDDs adhere to similar principles of node-based variable testing,

they selectively omit many zero-branches that do not yield new information.

4.2.6.2.1 Key Distinctions. While ZDDs also enforce an ordering and can be reduced

via isomorphism checks, the core difference lies in the zero-suppression mechanism:

• If following a 0-edge provides no meaningful distinction in the final outcome, that

0-edge and its corresponding node are pruned.

• The 1-branches are retained but merged where possible, much as in RoBDDs.

By removing portions of the diagram where ”nothing interesting” (i.e. no new sets or subsets)

occurs, the diagram remains compact.

4.2.6.2.2 Illustrative Example Revisiting f(a, b, c) = a∧
(
b∨ c

)
from above, Figure 4.5

sketches a plausible ZDD. Note here:

• Node (a) splits into a 0-edge that immediately goes to a node (or directly to a 0-terminal)

that is pruned if it carries no unique set representation.

• The 1-edge leads to further variable tests (b or c), but many 0-branches are again

suppressed if they do not alter the final outcome distinct from an already-represented

path.

In general, ZDDs apply much the same merging rules as RoBDDs and can yield similarly

unique structures for a given variable order. They tend to excel in representing large but

sparsely populated families of subsets (e.g., all minimal cut sets in a reliability system)

because superfluous 0-edges are systematically suppressed.

4.2.6.3 Probabilistic Sentential Decision Diagrams (PSDD)

A Probabilistic Sentential Decision Diagram (PSDD) is a tractable representation for a

probability distribution over a set of propositional variables subject to logical constraints. In
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a

b

c

1 0

0

1

0
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01

Figure 4.5: A Zero-Suppressed Binary Decision Diagram (ZDD) for f(a, b, c) = a ∧
(
b ∨ c

)
.

Many zero-branches are pruned.

essence, a PSDD is a parameterized Sentential Decision Diagram (SDD) in which each node

is assigned a well-defined local distribution. By construction, the PSDD’s global distribution

respects a given base theory (i.e., a propositional formula representing constraints), assigns zero

probability to every assignment violating that theory, and factors the remaining assignments

according to a hierarchical decomposition.

Definition 5 (Normalized SDD). Given a vtree, v, over variables X1, ..., Xn, an normalized

SDD over T is defined recursively as follows:

1. A terminal node is a literal Xi or ¬Xi

2. At an internal vtree node with left subtree Vl and right subtree Vr, a normalized SDD is

a finite disjunction:
k∨

i=1

(Pi ∧ Si)

where:

(a) For every i, Pi is a normalized SDD over the variables in Vl, and Si is a normalized

SDD over the variables in Vl.

(b) The set {P1, . . . , Pk} forms a partition of the space over Vl; that is, ∀i 6= j :

Pi ∧ Pj = ⊥ (mutually exclusive) and
∨k

i=1 Pi = >(exhaustive).
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(c) Each Si is distinct (no two are equivalent).

(d) Each prime-sub pair (Pi, Si) is compressed: distinct primes never associate to

equivalent subs and vice versa (no redundancy).

Once the normalized SDD is fixed, one may introduce continuous parameters to obtain a

PSDD. These parameters, in effect, turn each decision node into a local mixture of its prime

components, while terminal nodes over variables become Bernoulli distributions.

Definition 6 (PSDD Syntax). Let n be an SDD node normalized for a vtree node v.

• If n is a terminal node:

1. If it encodes a literal (e.g. X, ¬X) or the constant ⊥, then its probability is fixed

implicitly (e.g. ¬X yields Pr(¬X) = 1, Pr(X) = 0 for that node alone).

2. If it is the constant > and v corresponds to some variable X, then we assign a

parameter θ ∈ (0, 1) indicating Pr(X) at this node.

• If n is a decision node with k elements [(p1, s1), . . . , (pk, sk)], we assign nonnegative

parameters θ1, . . . , θk such that
∑k

i=1 θi = 1. Furthermore, if si = ⊥, then θi must be

zero (no probability is allotted to a sub whose base is unsatisfiable).

The resulting parameterized structure is called a PSDD.

Each node n in a PSDD induces a local distribution Prn(·) on the variables of the vtree

node n is normalized for. At a decision node, the probability of a complete assignment is

given by multiplying:

1. The probability that we ”choose” a particular prime pi, labeled by θi.

2. The probability contributed by prime node pi on its variables.

3. The probability contributed by sub node si on its (disjoint) variables.
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Summing across all primes yields Prn at that node. By construction, the root node’s distribu-

tion Prr then covers all variables and zeroes out any assignments that do not satisfy the base

theory.

Theorem 4 (Base Property [28]). If a PSDD node n is normalized for vtree node v, then

Prn(x) = 0 whenever x does not satisfy the SDD sub-formula [n]. At the root node r,

Prr(x) > 0 only if x satisfies the entire theory.

4.2.6.3.1 Parameter Semantics. A key property of PSDDs is that each parameter θi

can be interpreted locally as a conditional probability given the context of the decision node.

Formally, if node n has context γn (i.e., the partial assignment implied by traversing the SDD

from the root to n), then:

θi = Pr
(
[pi]

∣∣ [γn])
where [, pi] is the logical content of prime pi. This ensures that local parameters align with

global Pr(·) in a transparent, compositional way.

4.2.6.3.2 Context-Specific Independence. Due to the vtree-based factorization, PS-

DDs capture rich context-specific independences [23]. At high level, once we know the node’s

context (which is a partial assignment or formula), certain subsets of variables become

conditionally independent of the rest. These independence statements can be read directly

from the PSDD structure, generalizing common conditional-independence ideas in Bayesian

or Markov networks.

4.2.6.3.3 Inference and Tractability. A central advantage of PSDDs is that computing

(Prr(e) for any evidence e can be done in time linear in the size of the PSDD. This incremental

algorithm proceeds bottom-up through each node, locally aggregating evidence contributions

and summing accordingly. Moreover, once node-level evidence statistics are available, one can

also efficiently compute single-variable or pairwise marginals using a second top-down pass.
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4.2.6.3.4 Parameter Learning under Complete Data. Another appealing property

is that maximum-likelihood parameters can be determined in closed form when every training

example is a complete assignment of all variables. Specifically, if a PSDD node n with

context γn has elements (pi, si), one sets

θi =
number of data points satisfying both γn and pi

number of data points satisfying γn
.

Parallel rules apply for terminal nodes representing >. Because sub-contexts γn ∧ pi are

pairwise disjoint, it suffices to tabulate data counts for each feasible sub-context. The outcome

is a simple frequency-based update analogous to parameter estimation in Bayesian networks,

yet here it respects the underlying SDD constraints exactly.

For any propositional distribution (and chosen vtree), there exists a corresponding PSDD

whose root distribution matches it exactly. Furthermore, if the PSDD is kept compressed

(meaning no redundant substructures), this representation is unique up to isomorphic details

[28]. Thus, PSDDs can serve as canonical forms for distributions under logical constraints.

In contrast to classical graphical models, PSDDs operate at the confluence of tractable

Boolean structure (via SDDs) and probability theory. They explicitly encode zero-probability

assignments (via the SDD base) while ensuring all positive assignments factor through

the decision nodes. Their parameter semantics aligns each local weight with a well-defined

global conditional probability. In addition, closed-form parameter learning is possible in the

complete-data setting. Hence, PSDDs provide a principled, canonical choice for modeling

distributions when the domain is governed by complex logical constraints.

4.3 Queries

The primary choice that dictates the selection of target languages in PRA is availability of

tractable/executable queries for a given language. The two most important query types that

are of interest to PRA are Model Counting (CT) and Model Enumeration (ME).
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4.3.1 Model Counting

Model Counting, a.k.a #SAT-problem, is a classic problem in Computability Theory and

VLSI (Very Large Scale Integration) analysis. It strive to answer the following question

about a given boolean expression (theory): “How many valid true/false variable assignments

(models) satisfy the boolean expression?” This problem is central to PRA, as it the compuation

algorithm behind Weighted Model Counting approach used for computing probabilities of

top events in Fault Trees and End States in Even Sequence Diagrams.

Importance of this query has largely determined the relative scarcity of underlying

implementations of PRA software. Tractability of this query in OBDD family of target

languages is primarily reason for popularity of this data structure among PRA software

vendors. However, despite the its perceived NP-complexity, CNF-based #SAT-solvers can

also be used, due to their efficient implementations and long-running research. Finally, with

new research showing still flowing, SDDs, identify themselves as a promising alternative due

to their improved succinctness.

4.3.2 Model Enumeration

Model enumeration is arguably even more important query for PRA, as it responsible for

implementations exhaustive Minimal Cutset search. This is one of the most intractable

algorithms allowing for only polynomial-time delay between successive solution, as the

primary determining complexity factor is exponential “blow-up” of the number of cutsets in

the first place. Few implementations, offer truly efficient and tractable solutions, with CNFs

and ROBDDs yet again taking the spotlight.
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Part II

Identifying Gaps
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Chapter 5

Current State of PRA Software

Probabilistic Risk Assessment (PRA) has evolved significantly since its inception in the

1970s, propelled by ever more complex risk models and simultaneous leaps in computational

power. Early PRA efforts, such as those contributing to the seminal Reactor Safety Study

(WASH-1400), vividly demonstrated how hardware constraints shaped the scope and fidelity

of probabilistic analyses. Yet even as computers transitioned from mainframes to personal

desktops and, more recently, to modern high-performance clusters and cloud-based platforms,

PRA software has embraced only incremental shifts, leaving gaps in usability, scalability, and

methodological clarity.

Historically, many PRA codes were developed simultaneously. PREP and KITT exemplify

early attempts to automate fault-tree evaluations via Monte Carlo or deterministic algorithms,

while MOCUS and SIGPI were similarly groundbreaking in generating Minimal Cut Sets

(MCS) and computing complex system probabilities. Tools such as MODULE, RISKMAN,

and IRRAS soon followed, addressing importance measures, uncertainty quantification, and

more extensive Personal Computer (PC) based risk analyses. By the 1980s, software like

CAFTA, SAPHIRE, and RiskSpectrum had begun to dominate the industry.

PRA practitioners navigate a crossroads today. On one hand, complex models, covering

fire PRA, seismic events, multi-unit sites, or other external hazards, demand enormous
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Table 5.1: An incomplete list of current and legacy Probabilistic Risk Assessment tools.

Tool Description Maintainer License
PREP MCS via Monte Carlo/deterministic methods [80]. Legacy -
KITT Calculates probabilities [79]. Legacy -
MOCUS Method for Obtaining Minimal Cut Sets [47]. Legacy -
MICSUP Minimal Cut Sets Upward [27]. Legacy -
MODULE Importance measures and uncertainty analysis [53]. Legacy -
RISKMAN First full suite of PRA modeling tools [82, 81]. ABS Consulting -
IRRAS Precursor to SAPHIRE [73, 74]. Legacy -
SIGPI Probabilistic performance of complex systems [57]. Legacy -
Phoenix Architect Windows-based PRA modeling tools, i.e. CAFTA [56, 25]. EPRI Commercial
SAPHIRE US NRC supported tool [78, 76, 77]. INL Free to use
KIRAP KAERI Integrated Reliability Analysis Code Package [52]. KAERI -
RiskSpectrum Windows-based PSA modeling tools [60]. RiskSpectrum Commercial
@RISK Formerly known as Palisade [63, 62]. Lumivero Commercial
RiskA Windows-based, limited availability [86]. FDS -
XFTA Crossplatform PSA quantification tools [69]. AltaRica Free to use
SCRAM Command-line risk analysis multi-tool [64]. OpenPSA GPL 3.0
DeRisk Uses Dynamic Uncertain Causality Graphs [87]. - -
FTREX Advanced Fault Tree quantification [46]. KAERI Commercial
QRAS Precursor to Trilith [49]. Legacy Commercial
Trilith Implements Hybrid Causal Logic (HCL) [83]. Prediction Tech Commercial
HCLA Web-based, implements HCL [70, 71]. UCLA GIRS Commercial
OpenPRA Web-based [36] OpenPRA MIT

computational resources. On the other, advanced High Performance Computing (HPC)

techniques, distributed computing paradigms, and open-source frameworks promise to shift

PRA into a new era of scalability, interoperability, and collaborative development. Nevertheless,

major hurdles remain: commercial or institutional code lock-in, difficulty automating large

model manipulation, and persistent struggles to communicate risk insights effectively to

non-expert audiences.

5.1 An Evolving Computing Landscape

Throughout the 1970s and 1980s, PRA computations commonly ran on mainframes or

minicomputers, with analysts waiting on batch-queued jobs that crunched fault trees over

hours or days. Early codes (e.g., PREP, KITT, and MOCUS) demonstrated proof-of-concept

methods Monte Carlo approaches in particular, that established PRA as a rigorous discipline,

even if they suffered from limited memory and processing capacities. When desktop computing
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came to the forefront, PRA tools shifted toward independently deployable PC software,

reducing mainframe dependency yet introducing new trade-offs, such as limited storage,

slower clock speeds, and often rudimentary interfaces.

By the late 1980s, large-scale PRA had grown more intricate. Regulatory demands

for LWR safety analyses, multi-component reliability demonstrations, and external-event

modeling (e.g., for seismic or fire hazards) made factorized approaches less practical. Projects

like RISKMAN, CAFTA, and SAPHIRE promised more streamlined user experiences, some

of which integrated event-tree building, fault-tree calculation, and uncertainty analysis in a

single workflow. Despite these advancements, most such tools were architected for single-core

execution and local desktop memory.

A persistent theme, even today, is that many PRA tool developers have yet to fully

embrace modern concurrency and distribute their workflows across multiple cores, nodes, or

cloud services. As PRA models expand to incorporate multi-hazard interactions (e.g., seismic

plus fire), multi-unit dependencies across nuclear sites, or advanced risk concepts that require

large parametric and epistemic uncertainty analyses, conventional single-threaded or lightly

parallel solutions become prohibitively slow. The near-term challenge is clear: PRA software

must be more flexible and parallelized.

5.2 Persistent Limitations

5.2.1 Scalability

While many PRA codes now run on modern operating systems, few can seamlessly scale to

high performance clusters or cloud environments. Even industry staples such as CAFTA or

SAPHIRE often rely on serial quantification algorithms or modest concurrency at best. Fire

PRA or seismic probabilistic models can easily contain tens of thousands of basic events,

pushing memory footprints into gigabytes for tasks that require cut set manipulation. This

ballooning complexity drives extended simulation run times; absent robust parallelization,
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analyses can bog down for hours or days, risking quantification failures altogether.

5.2.2 Model Development

The manual labor required to build and maintain PRA models remains a pervasive dilemma.

Flag-file manipulation, manual event-tree expansions, or piecemeal data updates can cause

inconsistent modeling states, which is particularly worrisome for multi-hazard and dependency

analyses. New features or coverage of external hazards (e.g., tornado missiles, external flooding,

or wildfire) often require major re-modeling efforts, a process that is not entirely error-proof.

Although most analyst-facing PRA tools provide GUIs for managing models as diagrams and

tables, the larger community still seeks high levels of workflow automation to support version

control, auditing, and streamlined scenario expansions.

5.2.3 Dependency Analysis

Another challenge is robustly capturing dependencies across broad modeling scale. One such

example is Human Reliability Analysis (HRA) dependencies. Humans interact dynamically

with evolving scenarios. These dependencies are seldom trivial to encode in classical fault

trees [30, 29]. Tools rarely provide out-of-the-box methods to incorporate advanced HRA

models or cross-system dependencies beyond standard common-cause failures. The upshot

is that results related to operator actions under multi-hazard events may be incomplete or

reliant on overly simplified assumptions.

5.2.4 Multi-Hazard, Multi-Unit Modeling

Modern risk considerations increasingly demand multi-unit site analyses. Typical PRA models

assume independence among units, but in reality, resources such as power supplies, control

staff, or emergency cooling systems may be shared. Incorporating multi-unit or multi-hazard

coupling can yield combinatorial explosions in the number of possible scenarios. Attempts
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to unify external-event hazard curves (for example, combining site-level seismic or flooding

profiles) within large PRA models often strain memory to the breaking point if naive

enumerations are used.

5.2.5 Communication of Risk Insights

Even as PRA findings grow more sophisticated, effectively communicating these results and

uncertainties to non-PRA practitioners remains an ever-present challenge. While the field has

embraced user-friendly front ends and reporting features, many PRA experts in nuclear energy

or other high-hazard industries note that bridging technical detail with executive decision-

making demands more intuitive dashboards, real-time updates (especially in emergencies),

and visualization tools. Closed-source PRA suites often provide only limited or proprietary

visualization capabilities, making it difficult to develop interactive analytics that align with

organizational needs.

5.2.6 Transparency, Licensing and Community Support

Most widely used PRA platforms, SAPHIRE, CAFTA, RiskSpectrum, and others, remain

closed-source or only partially accessible. This approach can hinder large-scale scientific collab-

oration and hamper efforts to optimize for multicore or cluster environments, where specialized

data structures and concurrency frameworks often require deep source-code modifications.

Closed-source ecosystems also limit the sector’s ability to adopt new technologies rapidly

(e.g., HPC libraries, containerization, or automation frameworks), forcing researchers to rely

on special arrangements or ad-hoc workarounds for fundamentally modernization-oriented

tasks.

In contrast, open-source efforts such as SCRAM [64] and OpenFTA [20] provide public

codebases that permit community-level improvements. SCRAM, for instance, has become a

flexible multi-tool for fault tree quantification, cut set manipulation, and simplified event-tree

analysis.
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5.3 Looking Forward

The PRA community stands on the cusp of transformative change. While computing perfor-

mance has never been more accessible, PRA models continue to outgrow the traditional serial

workflows that once defined the field. Near-term developments in PRA software are poised to

address some of the most pressing limitations. Solving these challenges will likely necessitate

HPC-optimized frameworks that can process large correlated event spaces efficiently. Over

the long run, new paradigms such as quantum computing or Fully Homomorphic Encryption

(FHE) might enable secure, large-scale PRA analysis, but these remain mostly academic

for now. The future lies in merging new parallel computing capabilities with a broader

appreciation of large multi-hazard scenarios, cross-unit interactions, and the need for robust,

flexible user tools. Equally crucial is reducing the manual burden of model manipulation and

ensuring that risk information, be it for licensing decisions or real-time emergency response,

can be communicated effectively, even to those without specialized PRA backgrounds.
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Chapter 6

Developing Benchmark Models

6.1 Model Translation

Model representation in the PRA domain is encumbered by format fragmentation and pro-

prietary development practices. A small group of stakeholders, each using specialized file

structures, has little incentive to converge on a single standard. Proposing a new ”universal”

format can inadvertently add yet another layer of fragmentation if adoption proves limited.

Conversely, attempting a fully connected translation map among all existing formats is a sig-

nificant undertaking, requiring both ongoing maintenance and broad community participation

that may not materialize.

6.1.1 PRAcciolini: Translation without a Single Intermediate Rep-

resentation

In view of these constraints, the short-term strategy is to create a system of lightweight

interfaces under an open-source tool, referred to here as PRAcciolini, that interlinks existing

translation tools without defaulting to a single pivot format. Rather than striving for every

possible conversion path, the goal is to form what might be called a ”translation spanning

tree”: a subset of connections that covers most practical needs while avoiding excessive
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overhead. This design allows each domain-specific library to retain its native parsing and

exporting routines, with conversions performed only when required.

Figure 6.1: Example of supported model translations in PRAcciolini.

As shown in Figure 6.1, a CAFTA XML file can be transformed into FTREX FTP

or SAPHSOLVE JSON, while MAR-D data can be republished as OpenPSA XML and

potentially mapped to a TensorFlow compatible format. Round-trip testing (translating

from one format to another and back again) verifies fidelity, ensuring that essential model

information remains intact. By removing the need for a monolithic ”canonical” structure, this

partial translation network can remain both flexible and modular, minimizing risky lock-step

updates whenever new releases or extensions emerge.

6.1.2 Long-Term Goal: OpenPRA JSON Schema

The long-term initiative extends beyond partial connectivity to propose an openly licensed

JSON schema under the OpenPRA umbrella. This plan intends to balance retained compati-

bility with existing standards against the specialized requirements of nuclear licensing. Two

major factors underlie this choice:

• Extensibility and Clarity: JSON natively supports hierarchical key-value pairs that
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facilitate both human readability and efficient parsing. PRA models tend to store

domain-specific knowledge, not merely numeric parameters, making readability a high

priority. Unlike FlatBuffers or similar purely binary formats, JSON offers a middle

ground by allowing large, descriptive models without sacrificing parser performance.

• Nuclear-Specific Needs: Although OpenPSA XML has served as a standard in

probabilistic safety, it is no longer actively maintained. The OpenPRA JSON schema

seeks to preserve core OpenPSA semantics while adding a namespace dedicated to

nuclear regulation. This extension accommodates plant-specific elements and licensing-

related fields that exceed the scope of general probabilistic models.

Thus, the near-term effort builds a manageable translation spanning tree through PRAc-

ciolini, minimizing integration burdens across multiple closed-source tools. Simultaneously,

OpenPRA JSON emerges as a robust, future-facing schema for those organizations requiring

more comprehensive and domain-tailored data structures. This dual approach, maintaining

workable interoperability while evolving a modern open standard, addresses both the imme-

diate priorities of the PRA community and the long-term need for a sustainable, extensible

foundation.

6.2 Generic Models

6.2.1 The Aralia Fault Tree Data Set

The Aralia dataset is a collection of 43 fault trees designed to exercise a wide array of logical

features, problem sizes, and failure probability scales [35]. In Table 6.1, each entry denotes a

distinct fault tree with a different configuration of basic events, gates, and minimal cut sets,

ultimately yielding broad diversity in both computational complexity and system reliability.

A prominent feature of the Aralia dataset is its wide range of fault-tree sizes and structures.

On the smaller side, some references list only a few dozen basic events (e.g., chinese with
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25 BEs or isp9605 with 32 BEs). Others, such as nus9601, contain over 1,500 basic events,

reflecting the scale of complex engineered systems or composite subsystems. Moreover, each

fault tree employs a varied mix of AND, OR, K/N (voting), and occasionally XOR or NOT gates.

This diversity of logical constructs makes Aralia an effective testbed for evaluating algorithms

that parse and solve fault trees beyond the typical AND/OR structure.

Another key aspect of the Aralia models is the large spread in minimal cut set counts

and top-event probabilities. Some trees report only a few hundred or a few thousand minimal

cut sets, while others claim tens of millions or more (reaching up to 8 × 1010 in the most

expansive configurations). The top-event probabilities vary from very rare failures on the order

of 10−13 to moderately likely failure rates above 0.7. This variance is crucial when assessing

numerical stability and runtime performance: methods employing rare-event approximations

can dramatically underestimate probabilities for the more frequent events, while computational

overhead grows rapidly for cut set expansions in highly interconnected models. All of the

Aralia fault trees are provided in OpenPSA Extensible Markup Language (XML) format.

Table 6.1: Summary statistics for the Aralia fault tree dataset [35].

Logic Gates
#

Fault

Tree

Basic

Events Total AND VOT XOR NOT

Minimal

Cut Sets

Top Event

Probability

1 baobab1 61 84 16 9 - - 46,188 1.01708E-04

2 baobab2 32 40 5 6 - - 4,805 7.13018E-04

3 baobab3 80 107 46 - - - 24,386 2.24117E-03

4 cea9601 186 201 69 8 - 30 130,281,976 1.48409E-03

5 chinese 25 36 13 - - - 392 1.17058E-03

6 das9201 122 82 19 - - - 14,217 1.34237E-02

7 das9202 49 36 10 - - - 27,778 1.01154E-02

8 das9203 51 30 1 - - - 16,200 1.34880E-03

9 das9204 53 30 12 - - - 16,704 6.07651E-08
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Table 6.1: Summary statistics for the Aralia fault tree dataset.

Logic Gates
#

Fault

Tree

Basic

Events Total AND VOT XOR NOT

Minimal

Cut Sets

Top Event

Probability

10 das9205 51 20 2 - - - 17,280 1.38408E-08

11 das9206 121 112 21 - - - 19,518 2.29687E-01

12 das9207 276 324 59 - - - 25,988 3.46696E-01

13 das9208 103 145 33 - - - 8,060 1.30179E-02

14 das9209 109 73 18 - - - 8.20E+10 1.05800E-13

15 das9601 122 288 60 36 12 14 4,259 4.23440E-03

16 das9701 267 2,226 1,739 - - 992 26,299,506 7.44694E-02

17 edf9201 183 132 12 - - - 579,720 3.24591E-01

18 edf9202 458 435 45 - - - 130,112 7.81302E-01

19 edf9203 362 475 117 - - - 20,807,446 5.99589E-01

20 edf9204 323 375 106 - - - 32,580,630 5.25374E-01

21 edf9205 165 142 30 - - - 21,308 2.09351E-01

22 edf9206 240 362 126 - - - 385,825,320 8.61500E-12

23 edfpa14b 311 290 70 - - - 105,955,422 2.95620E-01

24 edfpa14o 311 173 42 - - - 105,927,244 2.97057E-01

25 edfpa14p 124 101 42 - - - 415,500 8.07059E-02

26 edfpa14q 311 194 55 - - - 105,950,670 2.95905E-01

27 edfpa14r 106 132 55 - - - 380,412 2.09977E-02

28 edfpa15b 283 249 61 - - - 2,910,473 3.62737E-01

29 edfpa15o 283 138 33 - - - 2,906,753 3.62956E-01

30 edfpa15p 276 324 33 - - - 27,870 7.36302E-02

31 edfpa15q 283 158 45 - - - 2,910,473 3.62737E-01

32 edfpa15r 88 110 45 - - - 26,549 1.89750E-02
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Table 6.1: Summary statistics for the Aralia fault tree dataset.

Logic Gates
#

Fault

Tree

Basic

Events Total AND VOT XOR NOT

Minimal

Cut Sets

Top Event

Probability

33 elf9601 145 242 97 - - - 151,348 9.66291E-02

34 ftr10 175 94 26 - - - 305 4.48677E-01

35 isp9601 143 104 25 1 - - 276,785 5.71245E-02

36 isp9602 116 122 26 - - - 5,197,647 1.72447E-02

37 isp9603 91 95 37 - - - 3,434 3.23326E-03

38 isp9604 215 132 38 - - - 746,574 1.42751E-01

39 isp9605 32 40 8 6 - - 5,630 1.37171E-05

40 isp9606 89 41 14 - - - 1,776 5.43174E-02

41 isp9607 74 65 23 - - - 150,436 9.49510E-07

42 jbd9601 533 315 71 - - - 150,436 7.55091E-01

43 nus9601 1,567 1,622 392 47 - - unknown unknown

6.2.2 The Generic Pressurized Water Reactor Model

Since 1995, INL has developed Standardized Plant Analysis Risk (SPAR) models for the US

NRC to provide critical risk-informed input to the regulatory process. The generic PWR

model is available as a SAPHIRE model, accompanied by a report detailing the foundations

of the modeling phenomena and referencing failure data. The current version of the SAPHIRE

model is v1.2; however, the documented model information corresponds to v1.0 [5]. This

model is continuously evolving, with researchers and PRA practitioners actively working to

improve it.

At present, the model considers various initiating events, including seismic activity,

internal flooding, internal fires, hurricanes, high winds, large break Loss of Cooling Accident

(LOCA), ISLOCA (Interfacing Systems LOCA), upset conditions leading to transients, loss
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of Component Cooling Water (CCW), loss of DC bus, loss of feedwater, loss of offsite power,

large steam line breaks, medium break LOCA, steam generator tube ruptures, small LOCA,

tornadoes, and excessive LOCA. Version 1.0 of the model includes 56 event trees linked with

140 fault trees. Summary statistics and SAPHIRE quantification results for the Generic PWR

v1.0 model are provided in Table 6.2.
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Table 6.2: Summary statistics for the Generic Pressurized Water Reactor model, quantified in SAPHIRE [5].

# Input Model Description # MCS Probability Seq.

1 EQK-BIN1 Seismic event in Bin 1 (0.1–0.3g) occurs Bin PGA 0.17) 610,016 2.085×10−9 85

2 EQK-BIN2 Seismic event in Bin 2 (0.3–0.5g) occurs (Bin PGA 0.39) 811,575 2.430×10−7 85

3 EQK-BIN3 Seismic event in Bin 3 (0.5–0.75g) occurs (Bin PGA 0.61) 802,392 2.336×10−6 85

4 EQK-BIN4 Seismic event in Bin 4 (0.75–1.0g) occurs (Bin PGA 0.87) 598,505 2.857×10−6 85

5 EQK-BIN5 Seismic event in Bin 5 (1.0–1.5g) occurs (Bin PGA 1.22) 440,041 2.348×10−6 85

6 EQK-BIN6 Seismic event in Bin 6 (1.5–3.0g) occurs (Bin PGA 2.12) 177,330 6.006×10−7 85

7 EQK-BIN7 Seismic event Bin 7 (> 3.0g) occurs 2 9.623×10−9 1

8 FLI-4160VACA IF – 4160V AC Room A 363,408 2.551×10−9 29

9 FLI-4160VACB IF – 4160V AC room B 364,430 2.563×10−9 29

10 FLI-AFW-ROOM IF – AFW pump rooms 126,120 2.109×10−8 29

11 FLI-CCW-ROOM IF – CCW pump rooms 283,639 2.941×10−8 29

12 FLI-CCW-ROOMA IF – CCW pump room A 631,309 1.065×10−9 29

13 FLI-CCW-ROOMB IF – CCW pump room B 636,421 1.066×10−9 29

14 FLI-CVC-ROOM IF – CVC pump room 277,526 3.958×10−10 29

15 FLI-RHR-ROOM IF – RHR pump room 36,008 1.071×10−10 29

16 FLI-SWS-ROOM IF – SWS pump rooms 190,025 2.997×10−7 29
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Table 6.2: Summary statistics for the Generic Pressurized Water Reactor model, quantified in SAPHIRE.

# Input Model Description # MCS Probability Seq.

17 FLI-SWS-ROOMA IF – SWS pump room A 182,124 1.402×10−8 29

18 FLI-SWS-ROOMB IF – SWS pump room B 188,786 1.409×10−8 29

19 FRI-AB-AFWAB Fire in auxiliary building causing failure AFW MDP A&B 420,246 1.243×10−8 29

20 FRI-AB-CCWBC Fire in auxiliary building causing failure CCW trains A&C 528,190 7.673×10−10 29

21 FRI-AB-LOOP Fire in aux building causes LOOP 29,283 1.098×10−8 33

22 FRI-AB-LOOP-DIVA Fire in aux building causes LOOP and loss of div A AC 45,325 3.138×10−6 33

23 FRI-AB-LOOP-DIVB Fire in aux building causes LOOP and loss of div B AC 46,090 3.159×10−6 33

24 FRI-AB-RHRA Fire in auxiliary building causing failure RHR train A 647,063 2.114×10−9 29

25 FRI-AB-SIS Fire in auxiliary building causing failure SIS trains 659,428 5.416×10−8 29

26 FRI-AB-SLOCA Fire in auxiliary building causes spurious PORV opening 14,257 5.499×10−7 8

27 FRI-MCR Fire in main control room causes an evacuation 3,464 9.081×10−6 6

28 FRI-SWS-BLD Fire in service water building failing SWS 71,923 9.331×10−8 29

29 HCN-BIN1 Hurricane wind event Bin 1 (111 mph–135 mph) 1,703,431 4.868×10−9 63

30 HCN-BIN2 Hurricane wind event Bin 2 (136 mph–165 mph) 1,064,448 2.181×10−9 63

31 HCN-BIN3 Hurricane wind event Bin 3 (166 mph–200 mph) 475,235 9.346×10−10 63

32 HCN-BIN4 Hurricane wind event Bin 4 (> 200 mph) 230,212 4.737×10−10 63

33 HWD-96MPH High wind (<110 mph) event occurs 2,558,791 2.264×10−8 63
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Table 6.2: Summary statistics for the Generic Pressurized Water Reactor model, quantified in SAPHIRE.

# Input Model Description # MCS Probability Seq.

34 ISL-RHR-CL ISLOCA RHR cold leg 217 3.063×10−11 2

35 ISL-RHR-HL ISLOCA RHR hot leg 3 2.063×10−8 2

36 L4160ACA Loss of 4160 VAC Bus A 160,390 2.207×10−7 29

37 L4160ACB Loss of 4160 VAC Bus B 162,204 2.220×10−7 29

38 LLOCA Large break LOCA 20,119 3.617×10−7 3

39 LOCCW Total loss of CCW 778,360 8.245×10−8 29

40 LODCA Loss of 125 VDC Bus A 156,714 4.249×10−8 29

41 LODCB Loss of 125 VDC Bus B 160,549 4.271×10−8 29

42 LOMFW Loss of main feedwater 1,550,153 7.502×10−8 18

43 LOOPGR LOOP (grid-related) 1,111,725 7.913×10−7 33

44 LOOPPC LOOP (plant-centered) 851,575 7.619×10−8 33

45 LOOPSC LOOP (switchyard-centered) 1,253,736 7.286×10−7 33

46 LOOPWR LOOP (weather-related) 1,014,915 5.660×10−7 33

47 LSSB Large steam line break (unisolable inside containment) 216,762 1.872×10−7 16

48 MLOCA Medium break LOCA 67,620 9.332×10−6 5

49 SGTR Steam generator tube rupture 1,039,329 2.668×10−6 12

50 SLOCA Small break LOCA 309,917 2.453×10−5 8
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Table 6.2: Summary statistics for the Generic Pressurized Water Reactor model, quantified in SAPHIRE.

# Input Model Description # MCS Probability Seq.

51 TOR-BIN1 Tornado event Bin-1 (136–165 mph) 128,067 5.355×10−12 63

52 TOR-BIN2 Tornado event Bin-2 (166–200 mph) 126,084 2.614×10−11 63

53 TOR-BIN3 Tornado event Bin-3 (> 200 mph) 95,064 1.296×10−10 63

54 TRANS Transient 4,178,502 1.525×10−7 29

55 XLOCA Excessive LOCA 1 1.000×10−7 1

TOTAL 28,559,059 1965
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6.3 Synthetic Models

6.3.1 Automated Synthetic Model Generation

Synthetic PRA models were generated using an automated model generation utility that

supports both fault tree (FT) and event tree (ET) structures [38]. The generation process is

configurable, with users specifying probabilistic parameters either through a command-line

interface (CLI) for fault trees or via a comma-separated values (CSV) configuration file for

event trees. The generator outputs models in multiple formats, including OpenPSA XML

and SAPHSOLVE JSInp and XFTA.

For fault tree generation, the CLI interface accepts arguments that define the number of

basic events, the types and weights of logic gates, the probabilities assigned to basic events,

and the structure of the tree, including the presence of common basic events and gates as

well as parent-child relationships. The event tree generator, on the other hand, is configured

through a CSV file that specifies the event tree structure and the associated fault trees for

each functional event. This file includes arguments for naming conventions, the number of

functional events, and the logic and data for each linked fault tree. For both FTs and ETs,

the generator allows for the specification of random seeds to ensure reproducibility.

Model validation is performed for OpenPSA models using a RELAX NG schema, which

ensures that the generated XML files conform to the required standard. Validation results,

including any errors, are logged for further review and correction.

Table 6.3 summarizes the key input parameters required for both FT and ET generation

[44].
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Table 6.3: Configuration options for automatically generating synthetic event & fault trees.

Argument Option Type Default
Applied

Option

Name for event tree –et-name RegEx/string autogen n_min_max

Number of Functional Event (FE)s –num-func range, int 1 1:10:100

Name for fault tree –ft-name RegEx/string autogen n_min_max

Name for the top gate –root string root

Seed for PRNG –seed int 123 372

Number of BEs –num-basic range, int 100 100:50:5000

Avg. number of gate arguments –num-args +ve float 3.0

Weights [AND, OR, VOT, NOT, XOR] –weights-g +ve float[] [1,1,1,1,1] [1,1,1,0,0]

Avg. % of common BEs per gate –common-b +ve float 0.3

Avg. % of common gates per gate –common-g +ve float 0.1

Avg. number parents for common BEs –parents-b +ve float 2

Avg. number of parents for common gates –parents-g +ve float 2

Number of gates (<= 0 means auto) –num-gate int 0

Maximum probability of BEs –max-prob float [0,1] 0.5 0.05

Minimum probability of BEs –min-prob float [0,1] 0.5 0.01

Number of Flag/House Event (HE)s –num-house int 0

Number of CCF groups –num-ccf int 0

Output format [XML, JSON, JSInp] –out {xml, jsinp, json} xml xml, jsinp

6.3.2 Summary of Generated Synthetic Datasets

A total of thirteen distinct synthetic model datasets [12] were generated using the methodology

described above. Each dataset is characterized by its structural configuration, parameter
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ranges, and output formats. The datasets are designed to cover a broad spectrum of model

sizes and complexities. All models are deep fault trees, with variations in the number of gates,

basic events, and gate type distributions.

The 100_to_100k_voter dataset consists of models with 100, 1,000, 10,000, and 100,000

basic events, with gate weights configured either for all gate types or for K/N gates only,

and a fixed percentage of common basic events. The 1_to_4k dataset contains models with

the number of gates ranging from 1 to 4,000, alternating between OR and AND gates. The

1_to_50k and 1_to_5k datasets similarly vary the number of gates from 1 up to 50,000 and

5,000, respectively, with alternating gate types and are provided in multiple formats. The

2_to_100k dataset includes models with basic events ranging from 2 to 100,000, with AND

and OR gate types and varying percentages of common basic events. The 500_to_750 dataset

features models with 500, 550, 600, and 750 basic events, with specific gate weights, common

event percentages, and, in some cases, common-cause failure groups.

The remaining datasets, labeled c1-P_0.01-0.05 through c7-P_0.35-0.9, are parameter

sweeps where the number of basic events ranges from 100 to 5,000, and the maximum and

minimum probabilities for basic events are systematically varied. These datasets are provided

in OpenPSA and, where applicable, SAPHSOLVE JSInp formats.

Table 6.4 provides an overview of the generated datasets, including their naming conven-

tions, key parameter ranges, and supported formats. All datasets are publicly available and

are structured to facilitate reproducibility and direct comparison across PRA quantification

engines.

Table 6.4: Summary of generated synthetic model datasets and their parameterizations [12].

Dataset Name Parameter Value / Range Formats

100_to_100k_voter Number of basic events 100, 1,000, 10,000, 100,000 OpenPSA

Gate weights all gates; K/N only

Common basic events (%) 0.01
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Table 6.4: Summary of generated synthetic model datasets and their parameterizations.

Dataset Name Parameter Value / Range Formats

1_to_4k Number of gates 1–4,000 JSInp

Gate type sequence Alternating OR/AND

1_to_50k Number of gates 1–50,000 OpenPSA,

Gate type sequence Alternating OR/AND JSInp

1_to_5k Number of gates 1–5,000 OpenPSA,

Gate type sequence Alternating OR/AND JSInp

2_to_100k Number of basic events 2, 10, 100, 1,000, 10,000, 100,000 OpenPSA

Gate types AND, OR

Common basic events (%) 0.01–0.09

500_to_750 Number of basic events 500, 550, 600, 750 OpenPSA

Gate weights [AND, OR, K/N]

Common basic events (%) 0.5–0.7

Common gates (%) 0.3–0.5

CCF groups 0 or 2

c1-P_0.01-0.05 Number of basic events 100:50:5000 OpenPSA,

Gate weights [1,1,1,0,0] JSInp

Max/Min probability max 0.05, min 0.01

c2-P_0.5-0.9 Number of basic events 100:50:5000 OpenPSA

Gate weights [1,1,1,0,0]

Max/Min probability max 0.9, min 0.5

c3-P_0.01-0.9 Number of basic events 100:50:5000 OpenPSA

Gate weights [1,1,1,0,0]
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Table 6.4: Summary of generated synthetic model datasets and their parameterizations.

Dataset Name Parameter Value / Range Formats

Max/Min probability max 0.9, min 0.01

c4-P_0.05-0.9 Number of basic events 100:50:5000 OpenPSA

Gate weights [1,1,1,0,0]

Max/Min probability max 0.9, min 0.05

c5-P_0.1-0.9 Number of basic events 100:50:5000 OpenPSA

Gate weights [1,1,1,0,0]

Max/Min probability max 0.9, min 0.1

c6-P_0.25-0.9 Number of basic events 100:50:5000 OpenPSA

Gate weights [1,1,1,0,0]

Max/Min probability max 0.9, min 0.25

c7-P_0.35-0.9 Number of basic events 100:50:5000 OpenPSA

Gate weights [1,1,1,0,0]

Max/Min probability max 0.9, min 0.35
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Part III

A Brute Force Approach
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Chapter 7

Building a Data-Parallel Monte Carlo

Probability Estimator

To handle massively parallel Monte Carlo evaluations of large-scale Boolean functions, we

have developed a feedforward-layer architecture that organizes computation in a topological

graph. At the lowest level, each Boolean variable/basic event (e.g., a component failure) is

associated with a random number generator to sample its truth assignment. We bit-pack

these outcomes, storing multiple Monte Carlo samples in each machine word to maximize

computational throughput and reduce memory footprint. Subsequent layers consist of logically

higher gates or composite structures that receive the bit-packed results from previous layers

and combine them in parallel using coalesced kernels. By traversing the computation graph

topologically, dependencies between gates and events are naturally enforced, so kernels for

each layer can run concurrently once all prerequisite layers finish, resulting in high kernel

occupancy and predictable throughput.

Section 7.4 formalizes how these kernels map the logical sampling workload onto a

three–dimensional ND–range, introducing a consistent coordinate system (ix, iy, iz) and a

rounding scheme that guarantees complete coverage without redundancy. The remainder of

this chapter adopts that notation.
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In practice, each layer is dispatched to an accelerator node using a data-parallel model ed

using SYCL. The random number generation pipelines are counter-based, ensuring repro-

ducibility and thread-safety even across millions or billions of samples. Gates that go beyond

simple AND/OR logic–such as VOT operators–are handled by specialized routines that

can exploit native popcount instructions for efficient threshold evaluations. As we progress

upwards through the layered topology, each gate or sub-function writes out its bit-packed

output, effectively acting as an input stream to the next layer. Throughout the simulation,

online tallying kernels aggregate how often each node or gate evaluates to True. These tallies

can then be turned into estimates of probabilities and sensitivity metrics on the fly. This

approach also makes adaptive sampling feasible: if specific gates appear to dominate variance

or are tied to particularly rare events, additional sampling can be allocated to their layer to

refine estimates.

7.1 Minimal Knowledge–Compilation Preprocessing for

Monte-Carlo Sampling

Before any kernels are built, the solver applies a single, very light compile pass whose only

purpose is to shave off two gate types that would otherwise require special kernels:

• NULL gates – a gate whose output is logically a no-op is deleted and any fan-out

rewired directly to its input buffer.

• NOT gates – instead of scheduling a one-input gate kernel, we tag the affected buffer

with an inversion flag. Every subsequent kernel simply toggles the word with a bitwise ~

on read.
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7.1.1 Why such little knowledge–compilation?

Classical KC pipelines (Section 4.1) strive for determinism or decomposability to enable

exact inference. Monte-Carlo evaluation requires no such restrictions. No other syntactic

normalization is attempted: negations may appear at arbitrary depth, XOR or k/n gates

remain untouched, and literals are free to occur with both polarities in different contexts.

This choice maximizes semantic expressivity and succinctness – flattening or pushing down is

possible by using a higher compilation flag, but not strictly necessary.

7.2 Layered Topological Organization

Recall that a PDAG G = (V , E) contains no cycles, so there is at least one valid topological

ordering of its nodes. A topological ordering assigns each node a numerical layer index such

that all edges point from a lower-numbered layer to a higher-numbered layer. If a node v

consumes the outputs of nodes {u1, . . . , uk}, then we require

layer(ui) < layer(v) for each i ∈ {1, . . . , k}.

In other words, node v can appear only after all of its inputs in a linear or layered listing.

The essential steps to build and traverse these layers are:

1. Compute Depths via Recursive Analysis: Each node’s depth is found by inspecting its

children (or inputs). If a node is a leaf (e.g., a Variable or Constant that does not

depend on any other node), its depth is 0. Otherwise, its depth is one larger than the

maximum depth among its children.

2. Group Nodes by Layer: Once each node’s depth is computed, nodes of equal depth form

a single layer. Thus, all nodes with depth 0 are in the first layer, those with depth 1 in

the second layer, and so on.
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3. Sort Nodes within Each Layer: Within each layer, enforce an additional consistent

ordering: (i) variables appear before gates, (ii) gates of different types can be grouped

to facilitate specialized processing. This step is not strictly required for correctness, but

it can streamline subsequent stages such as kernel generation or partial evaluations.

4. Traverse Layer by Layer: A final pass iterates over each layer in ascending order. Because

all inputs of any node in layer d lie in layers < d, the evaluation (or ”kernel build”) for

layer d can proceed after the entire set of layers 0, . . . , d− 1 is processed.

This structure ensures a sound evaluation of the PDAG: no gate or variable is computed

until after all of its inputs are finalized.

7.2.1 Depth Computation and Node Collection

1. Clear Previous State. Any existing ”visit” markers or stored depths in the PDAG-

based data structures are reset to default values (e.g., zero or -1).

2. Depth Assignment by Recursion. A compute_depth subroutine inspects each node:

(a) If the node is a Variable or Constant, it is a leaf in the PDAG, so depth = 0.

(b) If the node is a Gate with multiple inputs, the procedure first recursively computes

the depths of its inputs. It then sets its own depth as

depth(gate) = 1 + max
`∈inputs of gate

[
depth(`)

]
.

3. Order Assignment. Each node stores the newly computed depth in an internal field.

This numeric value anchors the node to a layer. A consistent pass over the entire graph

ensures correctness for all nodes.

After depths are assigned, gather all nodes, walking the PDAG from its root, recording

each discovered node and adding it to a global list.
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(a) Working example from Fig. 4.2b.

Figure 7.1: Layered topological ordering on the Propositional Directed Acyclic Graph (DAG),
with coalesced/fused kernels, partitioned by operation type.
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7.2.2 Layer Grouping and Local Sorting

Begin by creating:

• A global list of all nodes, each with a valid depth,

• A mapping from node indices to node pointers,

Then, sort the global list by ascending depth. Let order(n) be the depth of node n. Then

order(n1) ≤ order(n2) ≤ . . . ≤ order(n|V|).

Finally, partition this list into contiguous layers: if the deepest node has a depth δmax, then

create sub-lists:

{nodes s.t. depth = 0}, {nodes s.t. depth = 1}, . . . , {nodes s.t. depth = δmax}.

Within each layer, sort nodes to ensure that Variable nodes precede Gate nodes, and Gate

nodes may be further sorted by Connective type (e.g., AND, OR, VOT, etc.).

7.2.3 Layer-by-Layer Kernel Construction

Apply the layer decomposition to drive kernel building and evaluation:

1. Iterate over each layer in ascending depth. Because every node’s dependencies lie

in a strictly lower layer, one is guaranteed that those dependencies have already been

assigned memory buffers, partial results, or other necessary resources.

2. Partition the layer nodes into subsets by node type. Concretely, Variable nodes

are batched together for basic-event sampling kernels, while Gate nodes are transferred

into gate-evaluation kernels.
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3. Generate device kernels. For Variable nodes, create Monte Carlo sampling kernels.

For Gate nodes, it constructs logical or bitwise operations that merge or transform the

sampled states of the inputs.

Once kernels for a given layer finish, move on to the next layer. Because of the topological

guarantee, no node in layer d references memory or intermediate states from layer d+1 or

later, preventing cyclical references and ensuring correctness.

7.3 Adopting the SYCL Execution Model

Before getting into our opinionated launch parameters, it is instructive to recall the abstract

execution hierarchy defined by the SYCL standard. This detour provides the conceptual

foundation upon which the remainder of this dissertation builds.

Figure 7.2: At a glance: The SYCL execution model describes relationships between ND-
Ranges, work-groups, sub-groups, and work-items.
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7.3.1 Conceptual Overview

Modern accelerator programming models must present the developer with a logical view of

parallel work that is independent of any specific piece of hardware. SYCL achieves this by

defining a small hierarchy of index spaces. Each level in the hierarchy provides progressively

stronger coherence and synchronization guarantees, yet none of them prescribes where that

work will eventually run. The mapping from logical indices to physical execution resources is

entirely deferred to the run–time or device compiler and is therefore opaque to the application.

In what follows we formalize the four key abstractions exposed by the SYCL execution model

and derive a set of identities that will be reused throughout the remainder of this dissertation.

7.3.2 Hierarchical Index Spaces

Let

G = (Gx, Gy, Gz) ∈ N3, Gd > 0 (d ∈ {x, y, z}),

be the global range. It enumerates the total number of logical tasks, or work–items, that shall

be executed in one kernel invocation. The associated set of global indices is

I = {0, . . . , Gx − 1} × {0, . . . , Gy − 1} × {0, . . . , Gz − 1},

with |I| = GxGyGz.

A second triple

L = (Lx, Ly, Lz), 0 < Ld ≤ Gd,

referred to as the local range, partitions the ND–Range into disjoint work–groups. Defining

Wd =
Gd

Ld

, d ∈ {x, y, z},
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(which implies Gd ≡ 0 (modLd)), the set of group indices reads

W = {0, . . . ,Wx − 1} × {0, . . . ,Wy − 1} × {0, . . . ,Wz − 1},

with cardinality |W| = WxWyWz. Each group w ∈ W owns exactly

|Γ| = LxLyLz

work–items that share fast local memory and barrier synchronization.

Within a work–group the implementation may further partition the local index space into

sub–groups of size S:

S = |Σ|, Σ ⊆ Γ, 1 ≤ S ≤ |Γ|.

Sub–groups execute in (near) lockstep and admit specialized collective operations, yet their

existence and size remain device–specific. Finally, the singleton element of the hierarchy is

the work–item, uniquely addressed by its global id i = (ix, iy, iz) ∈ I.

The containment relations

work–item ∈ sub–group ⊆ work–group ⊆ ND–Range

hold for every index triple.

7.3.3 Abstractness of the Model

None of the above definitions mention vector widths, cores, or memory banks. The SYCL

execution model is strictly an index algebra; it provides (i) a naming scheme for independent

pieces of work, and (ii) a lattice of synchronization points that the run–time must respect.

Once the tuples G and L have been fixed, every additional property of the physical execution,

including occupancy, scheduling order, and even whether groups are run concurrently or
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serially, is an implementation detail.

Notation used from here onward.

We will exploit the following shorthand throughout the subsequent analysis:

1. |I| = GxGyGz (total work–items),

2. |W| = WxWyWz (total work–groups),

3. |Γ| = LxLyLz (work–items per group),

4. 〈ig, il〉 embodiment of a work–item by its enclosing group index ig ∈ W and its local

index il ∈ Γ.

These identities are purely algebraic and therefore remain valid for any SYCL–conformant

device.

From Abstraction to Implementation Strategy. Next, we translate these concepts

into the concrete launch geometries and dependency patterns required by our Monte–Carlo

solver. The forthcoming sections build progressively from global range rounding rules to

kernel–specific mappings.

7.3.4 Basic–Event Sampling Kernels

Each Variable node in layer d represents an i.i.d. Bernoulli trial with success probabil-

ity p_v ∈ [0, 1]. The evaluation of all variables in a layer is consolidated into one data–parallel

kernel that generates a contiguous block of bit–packed outcomes:

1. Parameter staging. For every variable v the solver stores the pair (idx(v), p_v) in host

memory, where idx(v) is the global node index. The list is stable across Monte–Carlo

iterations and is therefore transferred to device memory only once.
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2. Contiguous layout. A device–side array of Nv records, Nv being the number of

variables in the layer, is allocated so that the probability field, the bit–packed result

buffer pointer, and any auxiliary counters are stored in structure–of–arrays (SoA) form.

The resulting stride–free access pattern maximizes global–memory throughput.

3. Kernel configuration. Let T denote the total number of Bernoulli draws requested

by the host run–time (cf. Sec. 8.2). The global ND–range is chosen as
(
dNve, B, P

)
,

mapping each work–item to a unique triple (v, b, p) of variable v, batch index b, and

bit–pack index p. The local work–group shape is computed adaptively to saturate the

target device while respecting hardware limits on registers and shared memory.

4. Execution. Every work–item initializes a counter–based generator (see the Philox

discussion in Sec. 8.2), converts the pseudo–random words into ω Bernoulli outcomes

via the integer–threshold technique, and writes the resulting w–bit word to the pre–

allocated buffer. No inter–item synchronization is required beyond the implicit barrier

at kernel completion.

The overall cost is O(T Nv/ω) arithmetic operations and Θ(T Nv/ω) global writes, making

the routine memory–bandwidth bound only for extremely small P .

7.3.5 Gate–Evaluation Kernels

Gate nodes are logically heterogeneous: AND, OR, XOR, NOT, NAND, NOR, XNOR, and

at–least–k (VOT) gates all feature distinct Boolean semantics yet share the same interface

of reading one or more bit–packed input buffers and writing a bit–packed output. To avoid

divergent control flow, the solver instantiates one specialized kernel per connective type present

in the current layer.

Consider a set Gtype containing all gates of a single connective. Their evaluation proceeds

as follows:
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1. Input resolution. For every gate g ∈ G the lists of positive inputs I+(g) and negated

inputs I−(g) are resolved to concrete device pointers. Positive and negative buffers are

concatenated so that a simple offset marks the first negated operand. The construction

is embarrassingly parallel on the host and involves no device work.

2. Contiguous block construction. Buffers and gate metadata are packed into an SoA

structure that is tile–aligned for coalesced reads. For at–least–k gates the threshold k

is stored alongside the pointer list.

3. Kernel launch geometry. Let Ng be the number of gates of the selected type. An

ND–range of
(
dNge, B, P

)
is created, identical in shape to the basic–event kernel so

that subsequent layers can reuse the same scheduling heuristics. Within each work–item,

Boolean logic is applied on a per–bitpack basis without branching:

• And, Nand: multiple & reductions plus an optional complement.

• Or, Nor: multiple | reductions plus an optional complement.

• Xor, Xnor: accumulated parity via ^ operations.

• Null, Not: trivial one–input, output, with complement.

• At–least–k: population counting of the aggregated bit–wise sum followed by a

threshold comparison implemented through native popcount instructions.

4. Dependency guarantees. Because all input buffers originate in earlier layers, the

run–time enforces an event dependency on every producing kernel, ensuring visibility

of the complete inputs before gate evaluation begins.

The bit–parallel operations ensure that the arithmetic intensity is high; the critical path is

dominated by a handful of integer masks and, for at–least–k gates, one integer addition plus

a comparison per input.
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7.3.6 Dependency–Aware Kernel Scheduling

Kernels are submitted to the device queue in strict layer order, yet the scheduler exploits two

orthogonal forms of parallelism:

1. Intra–layer concurrency — basic–event sampling and the multiple gate kernels of the

same layer depend exclusively on the previous layer, not on one another. They are

therefore eligible for concurrent execution subject to device resources.

2. Iterative sampling — the bit–packed sample space is sliced into Titer iterations decided

by the sample shaper. Kernels capturing the same node repeat across iterations and

are expressed with an explicit iteration counter, enabling the run–time to re–use the

same compiled binary while varying the random counter seed and output offsets.

Dependencies are represented as light–weight events; the host never performs explicit syn-

chronization inside a layer but relies on the queue to enforce the partial order.

7.3.7 Work–Group Optimization Heuristics

Let G denote the global item count of the kernel at hand and Lmax the maximum local size

supported by the device along each axis. The solver selects a local range (lx, ly, lz) according

to

lx = min
(
pow2ceil(G), Lmax

)
,

ly = min

(
B,

Lmax

lx

)
,

lz = min

(
P,

Lmax

lxly

)
,

which heuristically balances occupancy with register pressure while retaining a uniform

work–item distribution. The shape is re–evaluated independently for basic events and gate

kernels because G differs across those two categories.
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7.3.8 Complexity and Scalability

Assume |V| variables and |G| gates in the graph, with layer depths bounded by D. Let

S = T B P ω be the total number of Bernoulli trials.

• Kernel build time. All host–side preprocessing runs inO(|V|+|G|)memory operations;

no search structure deeper than a hash map is required.

• Device execution time. Each basic–event kernel performs S integer comparisons.

Each gate kernel evaluates S Boolean operations whose count is proportional to the

fan–in of the gate. Hence the total arithmetic complexity is O
(
S (1 + deg)

)
, where deg

is the average gate fan–in.

• Parallel scalability. Both kernel categories exhibit linear speed–up with the number

of compute units until either (i) the global launch size no longer saturates the device or

(ii) memory bandwidth limits are reached. Because all kernels are fully independent

across the B and P dimensions, they scale particularly well on multi–tile accelerators.

The design therefore provides a clear separation of concerns: depth–first analysis establishes

the dependency structure; kernel generation translates that structure into homogeneous,

vectorizable work; and a light–weight event system schedules the resulting kernels with

minimal host intervention.
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Figure 7.3: A fully connected Probabilistic-Propositional Directed Acyclic Graph.
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7.4 Kernel-Level Execution Model

7.4.1 Coordinate System and Notation

Let (Gx, Gy, Gz) ∈ N3 denote the global range supplied to the device and (Lx, Ly, Lz) the

local (work – group) range. We further define

Wd =
Gd

Ld

, d ∈ {x, y, z}, and W = WxWyWz,

where Wd counts work-groups along axis d and W is the total number of work-groups. Every

work-item within a group is identified by its local id ` = (`x, `y, `z) with 0 ≤ `d < Ld.

Unless stated otherwise the following global symbols are used throughout the chapter

V # basic events (variables)

G # standard logic gates

A # at-least-k gates

T Monte-Carlo iterations

B batches per iteration

P bit-packs per batch

ω bits per pack = 8 · sizeof(bitpack_t)

N trials per iteration = B P ω

7.4.2 Generic Rounding Scheme

All kernels adopt the nearest-multiple rule

Gd =
⌈Qd

Ld

⌉
Ld, Qd ∈ {V,G+ A, 1} × {B} × {P},

where Qd is the problem-specific lower bound listed in Table 7.1. This rule guarantees that

every logical task is scheduled while respecting the SYCL constraint Gd ≡ 0 (modLd).
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7.4.3 Kernel-Specific Mappings

Each kernel instantiates a surjective mapping

Φ : {0, . . . , Gx − 1} × {0, . . . , Gy − 1} × {0, . . . , Gz − 1} � S,

where S is the set of logical sub-tasks it must solve. We list the mappings succinctly:

• Basic-event sampling (#S = V BP ): ΦBE(ix, iy, iz) = (v = ix, b = iy, p = iz).

• Standard gate evaluation (#S = GBP ): ΦG(ix, iy, iz) = (g = ix, b = iy, p = iz).

• At-least-k gate evaluation (#S = ABPω): iz = p ω + λ with λ ∈ {0, . . . , ω − 1}.

The pair (b, p) indexes the bit-pack, while λ singles out a bit lane. One work-group

therefore owns a unique triplet (a, b, p) and folds the ω lanes with a group reduction.

• Tally accumulation (#S = V BP ): identical to ΦBE but with Lx = 1 such that each

group covers exactly one tally node.

7.4.4 Trial Coverage Guarantee

Let Ξ be the set of Bernoulli trials processed by a kernel in one iteration. By construction

|Ξ| = BPω︸ ︷︷ ︸
trials/ node

×



V, basic-event,

G, standard gate,

A, at-least gate,

V, tally.

Because ω divides Gz in every case, each trial is owned by exactly one work-item and is

executed precisely once.
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Table 7.1: Minimum global dimensions Qd before round-up.

Kernel Qx Qy Qz

Basic-event V B P
Standard gate G B P
At-least-k gate A B Pω
Tally V B P

7.4.5 Work-Group Invariants

Let Γ be a work-group. For every kernel the following invariant holds inside Γ:

[
(`x, `y, `z) ∈ Γ

]
=⇒ all work-items share the complete set of inputs required to produce one output literal.

Consequently intra-group communication (reductions, barriers) never crosses logical bound-

aries, enabling lock-free execution except for the single atomic update in the tally kernel.

7.4.6 Complexity per Work-Group

With L = LxLyLz the number of instructions executed by a group is

CΓ =



Θ(ω
4
), basic-event (bit-packing),

Θ(deg g), gate of fan-in deg g,

Θ(deg a+ logω), at-least-k,

Θ(L+ logL), tally popcount + reduction,

all independent of T owing to the strict buffering between iterations.
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Chapter 8

Bitpacked Basic–Event Sampling

Kernels

Monte Carlo simulations, probability evaluations, and other sampling-based procedures

benefit greatly from efficient, high-quality Random Number Generator (RNG)s. A large

class of modern RNGs are known as counter-based Pseudo Random Number Generator

(PRNG)s, because they use integer counters (e.g., 32-bit or 64-bit) along with a stateless

transformation to produce random outputs. The Philox family of counter-based PRNGs is a

well-known example, featuring fast generation, high period, and good statistical properties.

In this section, we discuss the general principles of counter-based PRNGs, explain how Philox

fits into this paradigm, analyze its complexity, and present a concise pseudocode version of

the Philox 4× 32-10 variant. Subsequently, we detail the bitpacking scheme used to reduce

memory consumption when storing large numbers of Bernoulli samples.

A counter-based PRNG maps a user-supplied counter (plus, optionally, a key) to a

fixed-size block of random bits via a deterministic function. Formally, if

x = (x1, x2, . . . , xk)
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is a vector of one or more 32-bit or 64-bit counters, and

k = (k1, k2, . . . , km)

is a key vector, then a counter-based PRNG defines a transformation

F(x, k) = (ρ1, ρ2, . . . , ρr),

where each ρj is typically a 32-bit or 64-bit output. Different increments of the counter

x produce different pseudo-random outputs ρj. The process is stateless in the sense that

advancing the RNG amounts to incrementing the counter (e.g., x 7→ x + 1).

Compared to recurrence-based RNGs such as linear congruential generators or the

Mersenne Twister, counter-based methods offer more straightforward parallelization, re-

producibility across multiple streams, and strong structural simplicity: no internal state

must be updated or maintained. This is particularly valuable in distributed Monte Carlo

simulations or GPU-based sampling, where each thread or work-item can be assigned a

different counter. Philox constructs its pseudo-random outputs by applying a small set of

mixed arithmetic (multiplication/bitwise) rounds to an input counter plus key. In particular,

Philox 4 × 32-10 (often shortened to ”Philox-4x32-10”) works on four 32-bit integers at a

time:

S = (S0, S1, S2, S3), K = (K0, K1).

The four elements {S0, S1, S2, S3} collectively represent the counter, e.g., (x0, x1, x2, x3). The

two key elements (K0, K1) are used to tweak the generator’s sequence. A single invocation of

Philox-4x32-10 transforms S into four new 32-bit outputs after ten rounds of mixing. At each

round, the algorithm:

1. Multiplies two of the state words by fixed ”magic constants” to create partial products.

2. Takes the high and low 32-bit portions of those 64-bit products.
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3. Incorporates the round key to shuffle the words.

4. Bumps the key by adding constant increments (W32A = 0x9E3779B9 and W32B =

0xBB67AE85).

After ten rounds, the final (S0, S1, S2, S3) is returned as the pseudo-random block. A new

call to Philox increases the counter S by one (e.g., S3 7→ S3 + 1) and re-enters the same

function. The Philox-4x32-10 algorithm is designed so that each blocking call requires a

constant number of operations, independent of the size of any prior ”state.” Specifically, each

round involves:

O(1) arithmetic operations,

and there are R = 10 rounds. Thus, each Philox invocation is asymptotically constant time

O(R) = O(1). The total cost to generate 128 bits (4 words × 32 bits) is therefore constant

time per call.

8.1 The 10-round Philox-4x32

Our implementation follows the standard 10-round approach for generating one block of

four 32-bit random words, also called Philox-4x32-10. Let MA = 0xD2511F53, MB =

0xCD9E8D57 be the multipliers, and let (K0, K1) be the key which is updated each round

by W32A = 0x9E3779B9 and W32B = 0xBB67AE85. The function Hi(·) returns the high

32 bits of a 64-bit product, and Lo(·) returns the low 32 bits. Because each call produces

four 32-bit pseudo-random words, Philox-4x32-10 is particularly convenient for batched

sampling. If only a single 32-bit word is needed, one can still call the function and discard

the excess words; however, many applications consume all four outputs (e.g., to produce four

floating-point variates).
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Algorithm 1 Philox-4x32-10
Require: Four 32-bit counters (S0, S1, S2, S3), key (K0, K1)
Ensure: Transformed counters (S0, S1, S2, S3)

1: procedure Philox_Round((S0, S1, S2, S3), (K0, K1))
2: P0 ←MA × S0 . 64-bit product
3: P1 ←MB × S2 . 64-bit product
4: T0 ← Hi(P1) ⊕ S1 ⊕ K0

5: T1 ← Lo(P1)
6: T2 ← Hi(P0) ⊕ S3 ⊕ K1

7: T3 ← Lo(P0)
8: K0 ← K0 +W32A
9: K1 ← K1 +W32B

10: return
(
(T0, T1, T2, T3), (K0, K1)

)
11: end procedure

12: procedure Philox4x32_10((S0, S1, S2, S3), (K0, K1))
13: for i← 1 to 10 do
14:

(
S0, S1, S2, S3), (K0, K1)← Philox_Round((S0, S1, S2, S3), (K0, K1))

15: end for
16: return (S0, S1, S2, S3)
17: end procedure

8.2 Bitpacking for Probability Sampling

It takes exactly one bit to represent the outcome of a Bernoulli trial. When these outcomes

are stored naively, each occupies an entire 8-bit byte, so only a fraction 1
8
of the allocated

space carries useful information. Packing indicators into the native machine word of width w

therefore reduces memory consumption by up to a factor of eight. More precisely,

Memorynaive = N × 8 bits, Memorypacked =
⌈
N
w

⌉
× w bits,

where N is the number of samples. In typical 64-bit environments we choose w = 64, but the

derivation is architecture-agnostic.
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8.2.1 Integer-threshold sampling.

Instead of converting each 32-bit random word r produced by Philox into a floating-point

variate, we compare it directly to an integer threshold. Let the target probability be p ∈ [0, 1].

Define the threshold

T =
⌊
p× 232

⌋
, 0 ≤ T ≤ 232 − 1.

Because Philox delivers uniformly distributed 32-bit integers over {0, . . . , 232 − 1}, the

event r < T occurs with probability exactly p (up to the discretization of the 32-bit grid).

The comparison is therefore sufficient to draw a Bernoulli outcome while avoiding the

cost of division and floating-point arithmetic. Using integer thresholds also guarantees

identical behavior across heterogeneous hardware, an essential property for reproducible

high-performance simulations.

8.2.2 Grouping four comparisons.

Each invocation of Philox-4× 32-10 yields the four words r0, r1, r2, r3. We evaluate the

predicate rj < T for every index j ∈ {0, 1, 2, 3} and collect the four resulting bits into a 4-bit

block. The block is inserted into a wider accumulator using bitwise shifts. Repeating the

procedure fills the entire w-bit container. If we denote by

g =
w

4

the number of 4-bit generations required to populate the container, the overall cost is exactly

g calls to the comparison–pack routine, or g additional increments of the counter component

S3 in Philox. No state other than the counter is maintained.
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Algorithm 2 Integer-threshold packing of four Bernoulli outcomes
Require: Probability p ∈ [0, 1]; 32-bit words (r0, r1, r2, r3)

Ensure: 4-bit integer bits containing the four Bernoulli draws

1: T ← bp 232c . pre-compute once

2: bits ← 0

3: for j ← 0 to 3 do

4: if rj < T then

5: bj ← 1

6: else

7: bj ← 0

8: end if

9: bits ← bits | (bj � j)

10: end for

11: return bits

8.2.3 Assembling a complete bitpack.

Calling Algorithm 2 successively for g generations yields a full w-bit word whose k-th bit

encodes the outcome of the k-th Bernoulli trial, ordered least-significant first. The procedure

is branch-free except for the threshold comparison and operates in O(g) time. Because g

is fixed by the word size, the complexity is effectively constant per stored word, and the

memory savings are realized without sacrificing statistical quality or portability.

8.3 Counter Assignment Across the ND-Range

Let (ix, iy, iz) ∈ [0, Gx)× [0, Gy)× [0, Gz) denote the global id of a work-item in the basic-event

kernel and let t ∈ {0, . . . , T − 1} be the Monte-Carlo iteration index. A collision-free family
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of Philox counters is obtained via

C(ix, iy, iz, t) =
(
ix + 1, iz + 1, iy + 1, (t+ 1)� 6

)
,

where the six vacated least-significant bits of the fourth word are reserved for intra-kernel

increments. The mapping is bijective onto

{1, . . . , V } × {1, . . . , P} × {1, . . . , B} × {1, . . . , 26},

guaranteeing independent pseudo-random streams for every work-item without synchroniza-

tion or shared state.
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Chapter 9

Gate Kernels for Bit-Packed Boolean

Evaluation

9.1 Connective Taxonomy

Let G be the set of Boolean gates obtained from the topological analysis of Section 7.2. Each

gate g ∈ G is represented by the triplet

g =
(
type(g), I+(g), I−(g)

)
,

where I+(g) and I−(g) denote its positive and negated inputs. We partition G into disjoint

subsets Gtype according to

type(g) ∈
{

Null,Not,And,Or,Xor,Nand,Nor,Xnor,Atleast
}
.

The subsequent sections analyze one subset at a time so that device kernels remain branch-free

and resource usage is homogeneous.
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9.2 Launch Geometry

For every connective type we schedule one kernel with global range

(Gx, Gy, Gz) =
(
dNge, B, P

)
, Ng = |Gtype|,

rounded by the nearest-multiple rule of Section 7.4. A work-item with global id (ix, iy, iz)

therefore processes the unique triplet (g, b, p) ∈ Gtype×{0, . . . , B− 1}×{0, . . . , P − 1}. Local

ranges (Lx, Ly, Lz) are chosen by the heuristic of Section 7.3.7 and refined in Section 9.5.

9.3 Bit-Parallel Reduction Schemes

9.3.1 Idempotent Connectives: AND/OR Families

For And, Or and their complements the kernel performs a word-wise left fold over the input

list. The accumulator is initialized as

R0 =


AllOnes, And/Nand,

Zero, Or/Nor.

Positive inputs use R← R⊗ v with ⊗ ∈ {&, |}; negated inputs substitute ¬v.

Lemma 5 (Bit-wise Idempotence). For any word size ω and any assignment of the input

bits,

Rfinal =
⊗

u∈I+(g)

u
⊗

v∈I−(g)

¬v

yields a correct bit-packed representation of gate g.

Proof. Idempotence of ∧ and ∨ ensures order-independent accumulation. Per-bit complement

commutes with both operators, preserving semantics.
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The instruction count is Cidemp = (deg g)Θ(1), one mask operation per input, independent

of ω.

9.3.2 Parity Connectives: Xor/Xnor

The fold operator becomes ⊕. Associativity allows work-groups to split the input list and

apply warp-level reductions, lowering register pressure for large fan-ins (Section 9.5). A final

complement realizes Xnor.

9.3.3 Threshold Connectives: At-Least k

Let n = deg g and k ∈ {0, . . . , n}. Fix the word width ω = 8 sizeof(bitpack_t) and launch

each work-group with Lz = ω so that lane λ ∈ {0, . . . , ω − 1} owns one bit position.

1. Per-lane counting: initialise cλ ← 0; stream through the inputs, incrementing cλ

whenever the masked bit is set (positive input) or cleared (negated input).

2. Threshold test: rλ ← [cλ ≥ k].

3. Group reduction: a lane-wise OR assembles the word R =
∑

λ rλ2
λ.

Theorem 6 (Work-Group Correctness). With the above geometry each work-group writes

exactly one valid output word per iteration.

Proof. Bijectivity of the mapping (group, lane) 7→ (p, λ) guarantees single-writer semantics;

Steps 1–3 implement the at-least k predicate bit-wise.

The per-lane cost is n conditional increments plus one comparison; adding the log2 ω-step

OR tree yields Cthr = Θ(n+ logω).

140



9.4 Performance Models

For idempotent and parity families let I = n and memory traffic M = n. Using Bmem and λ

from Sections 11.1–11.2,

IPS ≤ min
(Bmem

Mw
,
C λf

I

)
,

where w is word size in bytes. Threshold gates replace I ← n+ logω.

9.5 Work-Group Optimization Heuristics

Empirically, gates with deg g > 64 profit from lane-parallel counting whereas smaller fan-ins

prefer maximal ly, lz to saturate memory bandwidth:

(lx, ly, lz) =


(1, B, P ), deg g > 64,

(1, min(B,Lmax), min(P,Lmax/B)), otherwise.

9.6 Complexity

CΓ =


Θ(n), idempotent/parity,

Θ(n+ logω), at-least k.

Aggregated over all gates the arithmetic cost is O
(
GnavgBP

)
.
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Chapter 10

Tallying Layer Outputs

At every Monte-Carlo iteration the simulator produces, for each logic node v ∈ V , a bit-packed

buffer encoding

Y(t)
v =

(
y
(t)
v,1, y

(t)
v,2, . . . , y

(t)
v,N

)
∈ {0, 1}N , t = 1, . . . , T,

where N=B×P×ω is the number of Bernoulli trials per Monte-Carlo iteration:

• B - number of batches,

• P - bit-packs per batch,

• ω=8 · sizeof(bitpack_t) - bits per pack.

Because the buffers are overwritten at the next iteration, a separate tally layer accumulates

summary statistics that persist for the entire simulation. The present section formalizes that

process and outlines an implementation-agnostic, data-parallel algorithm that realizes it on

modern accelerators.
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10.1 Notation and Problem Setting

We inherit the global symbols (T,B, P, ω) from Section 7.4. Recall that one Monte–Carlo

iteration generates N=B P ω Bernoulli trials per logic node. Index those trials as

Ξ =
{
(t, b, p, λ) | t∈ [T ], b∈ [B], p∈ [P ], λ∈ [ω]

}
,

where [n] ≡ {0, . . . , n− 1}. For every node v ∈ V the kernel produced in Section 7.3.5 writes

a bit–packed vector

Yv : Ξ −→ {0, 1}, (t, b, p, λ) 7→ yv,t,b,p,λ.

Grouping by iteration we recover the notation Y(t)
v ∈ {0, 1}N used earlier. The tally routine

operates on the scalar summaries

sv =
∑

(t,b,p,λ)∈Ξ

yv,t,b,p,λ, v ∈ V ,

which are accumulated in 64–bit integers to avoid overflow even for trillion–sample runs.

10.2 Statistical Objectives

The goal is to estimate the Bernoulli success probability pv=P[Yv=1] for every node v ∈ V .

Denote by

p̂v =
sv
T N

its empirical frequency after T iterations.

Lemma 7 (Unbiasedness). E[p̂v] = pv and Var(p̂v) =
pv(1− pv)
T N

.

Proof. Because distinct trials in Ξ are independent and identically distributed Bernoulli(pv)

variables, linearity of expectation and the variance–additive property of independent sums

yield the stated expressions.
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Theorem 8 (Asymptotic Normality). If T N →∞ then

√
T N (p̂v − pv)

D−→ N
(
0, pv(1− pv)

)
.

Proof. The Lyapunov condition of the Central Limit Theorem holds for bounded Bernoulli

variables; see, e.g., [22, Th. 27.4]. The scaled sum therefore converges in distribution to the

stated normal law.

Define the plug–in variance estimator

σ̂2
v =

p̂v(1− p̂v)
T N

.

Combining Theorem 8 with Slutsky’s theorem yields the (1− α) confidence interval

Cv,α =
[
p̂v − z1−α/2 σ̂v, p̂v + z1−α/2 σ̂v

]
.

Clamping the bounds to [0, 1] ensures numerical stability when sv is very small or very close

to T N .

In practice the kernel therefore stores only the integer accumulator sv; all higher–level

statistics are derived á posteriori on demand, incurring O(|V|) host–side work.

10.3 Parallel Accumulation Algorithm

The accumulation kernel is invoked on a three-dimensional nd_range, chosen such that

globalx ≥ V,

globaly ≥ B,

globalz ≥ P.
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Work-item (ix, iy, iz) is responsible for exactly one bit-pack:

node v = ix, batch b = iy, pack p = iz.

Local workflow of a work-item

1. Load the pth bit-pack of batch b from buffer.

2. Compute c = popcount(bitpack).

3. Reduce the c’s belonging to the same work-group in shared memory (tree reduction or

reduce_over_group).

4. One designated leader performs atomic_add(num_one_bits, group_sum).

The reduction ensures only one atomic operation per group, greatly reducing contention

when P is large.

We present platform-neutral pseudocode that encapsulates the above logic while remain-

ing agnostic to the underlying API. After each Monte-Carlo iteration the host enqueues

TallyKernel with a fresh iteration counter. When either (i) a user requests intermediate

statistics or (ii) a pre-set reporting interval is reached, the host reads back num_one_bits

and executes the purely serial routine shown in Algorithm 3.
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Algorithm 3 Post-processing of a single node’s tally
Require: s - total one-bits, T , B, P , ω - run parameters

Ensure: p̂, σ̂, two symmetric CIs

1: N ← B · P · ω

2: p̂← s/(T N)

3: σ̂ ←
√
p̂(1− p̂)/(T N)

4: for each z ∈ {1.96, 2.58} do

5: CI←
[
max(0, p̂− zσ̂),min(1, p̂+ zσ̂)

]
6: end for

The above normal approximation is valid provided T Np̂ and T N(1 − p̂) both exceed

roughly 10; otherwise an exact Clopper-Pearson interval can be substituted with no change

to the running sum logic.

10.4 Correctness and Complexity

Work-item cost. Each work-item performs one popcount and participates in an O(logL)

intra-group reduction (L= local_range), yielding an overall O(logL) instruction count.

Global cost. The total number of work-items launched per iteration is V ·B ·P . Because

each bit-pack contains ω Bernoulli trials, the cost per trial shrinks as ω−1.

Memory traffic. Every work-item reads exactly one machine word and no writes occur

except the single atomic addition per work-group. Hence the algorithm is memory-bandwidth

bound only at extremely low arithmetic intensity (P ≈ 1).

Linear scalability. All tally nodes are independent. Increasing V therefore scales the total

runtime linearly until either (i) the device saturates its occupancy or (ii) atomic contention

becomes non-negligible; the group-level reduction mitigates the latter.

The design therefore provides a clear separation of concerns: depth–first analysis establishes
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the dependency structure; kernel generation translates that structure into homogeneous,

vectorizable work; and a light–weight event system schedules the resulting kernels with

minimal host intervention.

10.5 Work–Group Geometry and Synchronization

The three–dimensional launch geometry (v, b, p) outlined in Sec. 10.2 is refined in the

implementation to minimize both occupancy loss and atomic contention. A crucial design

choice is to fix local x = 1, thereby dedicating one work–group to exactly one tally node v.

The remaining two dimensions then tile the (b, p)–plane with a rectangular block of size

(
1, ly, lz

)
, ly · lz ≤ Lmax,

where Lmax is the device–specific upper bound on the total work–group size. Provided ly≥B

and lz≥P , only one group is dispatched per tally and per iteration, guaranteeing that the

reduction of Step 3 and the atomic addition of Step 4 in Sec. 10 execute exactly once. Should

resource pressure force ly < B or lz < P , multiple groups are launched and the atomic update

is replicated; correctness is preserved by the commutativity of addition, but the repeated

work incurs a small overhead. The occupancy model therefore trades a moderate loss in

parallelism for deterministic behavior and reduced synchronization cost.

A relaxed memory order is sufficient for the atomic accumulator because the kernel

guarantees program order between the intra–group reduction and the atomic fetch_add. No

additional fences are required, and the resulting implementation maps efficiently to both

discrete and integrated GPUs.
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10.6 Incremental Update of Derived Statistics

While Monte–Carlo sampling proceeds, applications often request intermediate probability

estimates p̂(t)v before the total budget T is exhausted. Recomputing p̂v and σ̂v from scratch

would require a host round–trip for every sampled bit. Instead, the tally layer maintains

two scalars per node: sv (total one–bits) and nv (total bits processed). After each completed

iteration the host merely increments nv ← nv+N and leaves sv to the device kernel. Whenever

a refresh is requested the statistics are updated via

p̂v =
sv
nv

, σ̂v =

√
p̂v(1− p̂v)

nv

,

which costs O(V ) host–side arithmetic and no device work. In practice the refresh cadence is

set adaptively: frequent updates early in the run aid variance monitoring, whereas late–stage

updates can be spaced further apart because the relative change in p̂v diminishes as nv → T N .

10.7 Convergence Diagnostics and Stopping Rules

Two families of diagnostics leverage the quantities already maintained by the tally kernel:

1. Relative half–width criterion. Define the half–width of the (1− α)–level interval

as hv = z1−α/2 σ̂v. The run may be terminated for node v once hv/p̂v ≤ ε, where ε is a

user–supplied tolerance. Because both σ̂v and p̂v are inexpensive to update, the test

incurs negligible overhead.

2. Sequential Wald test. When the goal is to decide whether pv exceeds a safety

threshold p0, one may adopt the sequential probability ratio test with boundaries

derived from sv and nv. The tally structure already provides the minimal sufficient

statistics, so the host evaluates the Wald condition after every refresh with no additional

device interaction.
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Because the diagnostics rely solely on sv and nv, no modification to the kernel is needed; all

logic resides in a lightweight host callback.

10.8 Implementation Cost Model

Let Cpc denote the latency of a hardware popcount and Crd(l) the latency of a tree reduction

over l work–items. The wall–clock time per iteration is approximated by

Titer ≈ (Cpc + Cmem)V BP + Crd(lylz)
V BP

lylz
+ Catomic

V BP

lylz
,

where Cmem and Catomic are the per–word memory and atomic latencies, respectively. The

model highlights two regimes:

• Arithmetic bound: when P � 1 and the popcount throughput saturates the execution

units, the first term dominates and scaling is limited by instruction bandwidth.

• Memory bound: when P ≈ 1 the workload collapses to a single read per work–item; the

kernel becomes memory bandwidth– limited as predicted in Sec. 10.2.

10.9 Numerical Robustness

All accumulators operate in integer arithmetic, thereby eliminating rounding error in sv.

Derived quantities computed in double precision satisfy |p̂v − sv/nv| < 2−53, well below any

practical error criterion for reliability analysis. Clamping the confidence interval bounds

to [0, 1] prevents pathological estimates when either sv = 0 or sv = nv in early iterations.

10.10 Relation to the Global Execution Model

The specialized geometry adopted in Section 10.5 is a direct instantiation of the rules

formalized in Section 7.4. Choosing Lx = 1 enforces the work – group invariant whereby a
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group owns exactly one tally node while still satisfying

Gx =
⌈ V
Lx

⌉
Lx = V,

so no over-provisioning occurs along the x-axis. The remaining dimensions follow the generic

rounding scheme with (Qy, Qz) = (B,P ), thus preserving the one-to-one correspondence

between work-items and bit-packs established in Section 7.4.
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Chapter 11

Backend–Specific Scalability Analysis

In this section we instantiate the abstract execution model of Section 7.4 on two concrete

hardware backends that span the current spectrum of commodity accelerators: (i) NVIDIA

GPUs programmed through the CUDA tool-chain and (ii) shared-memory multicore CPUs

equipped with wide SIMD units. The discussion follows the roofline methodology [84] wherever

a bandwidth–or–compute bottleneck must be highlighted and retains the global kernel

symbols introduced previously. Additional backend parameters are summarized in Table 11.1;

architectural constants are set in italic type.

Throughout we denote by L = LxLyLz the total number of work-items in a SYCL

work-group and by W = WxWyWz the total number of work-groups launched by the kernel.

11.1 CUDA GPU backend

11.1.1 Thread-Block Mapping

Each SYCL work-group is lowered to a CUDA thread block. The effective block size used by

the hardware is therefore

LCUDA = min(L, Tmax).
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Table 11.1: Backend parameters introduced in this section. Architectural constants are
shown in italic.

Symbol Meaning

C physical compute units (SMs on CUDA, cores on CPU)
Ws SIMD-lane width (”warp” size on CUDA; 32 on recent GPUs)
Tmax maximum resident work-items per work-group / block
Bmax scheduler limit on concurrent blocks per compute unit
Rmax registers available per compute unit
Bmem attainable device memory bandwidth
f core clock frequency (Hz)

The kernel grid retains the user-specified dimensions (Wx,Wy,Wz) and thus launches W

blocks in total. A block of size LCUDA contains dLCUDA/Wse warps.

11.1.2 Theoretical Occupancy

A standard proxy for latency hiding on GPUs is the occupancy O, i.e. the ratio between

active and maximum resident warps per SM. With

Wact = min
(
Bmax,

⌈
LCUDA
Ws

⌉)
×
⌈
W
C

⌉
active per-SM warps, the theoretical occupancy evaluates to

Oth = min
(
1,

Wact

BmaxTmax/Ws

)
.

Given that realistic Monte-Carlo workloads satisfy W � C the rightmost fraction ap-

proaches 1, and kernels are typically either register- or shared-memory-limited rather than

scheduler-limited.
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11.1.3 Register Footprint and Latency Hiding

Let R denote the per-thread register footprint measured by the compiler and Wreg =

bRmax/(RWs)c the register-constrained warp capacity per SM. The empirical latency hiding

factor on modern NVIDIA hardware can be captured by

λCUDA = min(Wreg, WsBmax),

which saturates instruction throughput once λCUDA & 4.

11.1.4 Throughput Model

Let I be the static instruction count per thread derived in Sec. 7.4. Assuming that the kernel

is compute-bound the sustained instruction rate (IPS) is approximated by

IPSCUDA ≈
C λCUDA f

I
.

The expression is linear in both the number of compute units C and the latency hiding

factor λCUDA until the memory subsystem is saturated; the break-even point is estimated in

the roofline plot of Fig. ?? (omitted here for brevity).

11.2 Shared-Memory Multicore CPU Backend

11.2.1 Work-Group to Thread Mapping

On CPUs a SYCL work-group is translated to an OpenMP parallel for team. The default

team size equals L but cannot exceed the architectural limit Tmax = Ws. The outermost loop

distributes the W work-groups over the available hardware threads, i.e. over C physical cores

and their simultaneous multithreading (SMT) contexts.

153



11.2.2 Vectorization Strategy

The innermost kernel dimension (global z) holds independent bit-pack indices. Mapping that

dimension to SIMD lanes yields perfect utilization as long as the kernel exposes at least

Ws independent bit-packs, which is guaranteed for the Monte-Carlo sample sizes considered

(ω ≥ Ws).

11.2.3 Roofline Bound

With b bytes and i floating-point instructions issued per trial the classical roofline model

bounds the attainable performance by

PCPU ≤ min
(Bmem

b
,
C IF

i

)
,

where IF denotes the peak per-core fused-multiply-add (FMA) rate. For the present kernels the

operational intensity i/b ≈ 0.25FMA/B places almost all CPU runs in the bandwidth-bound

regime unless the sample count per node exceeds 1010, well beyond typical reliability studies.

11.2.4 Strong-Scaling Perspective

Holding the global problem size fixed while increasing the core count leads to a speed-up

characterized empirically by

S(C) =
T1
TC
≈ C

1 + α(C − 1)
,

where the serial fraction α ≤ 0.05 was obtained on a 64-core Zen4 system. The Amdahl limit

1/α therefore exceeds the practical core counts of current workstation-class CPUs.
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11.2.5 Practical Parameter Choices

Extensive auto-tuning on a 64-core Zen4 host and an NVIDIA Ada GPU suggests

Kernel class GPU (CUDA) CPU (OpenMP)

Tally (Lx, Ly, Lz) = (1, Ws, 1) (1, Ws, 1)

Gate (1, 1, Ws) (1, 1, Ws)

which aligns the innermost loop with the cache line size and the SIMD width on both

architectures.
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Chapter 12

Preliminary Benchmarks on Arialia

Fault Trees

12.1 Runtime Environment and Benchmarking Setup

All experiments were performed on a consumer-grade desktop provisioned with an NVIDIA®

GeForce GTX 1660 SUPER graphics card (1,408 CUDA cores, 6GB of dedicated GDDR6

memory) and a 10th-generation Intel® CoreTM i7-10700 CPU (2.90GHz base clock, with

turbo-boost and hyperthreading enabled). The code implementation relies on SYCL using

the AdaptiveCpp (formerly HipSYCL) framework, which employs an LLVM based runtime

and just-in-time (JIT) kernel compilation.

Monte Carlo Sampling Strategy

Each fault tree model was evaluated through a single pass (one iteration), generating as many

Monte Carlo samples as would fit into the GPU’s 6GB memory. A 64-bit counter-based

Philox4x32x10 random number generator was applied in parallel to produce the basic-event

realizations. Note, with the exception of das9205, for which 5 passes were performed (in

≈ 0.96 seconds), all inputs were quantified using just one pass. We specifically chose das9205
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since its overall event probability is quite low, and requires many naive Monte Carlo samples.

Bit-Packing and Data Types

To reduce memory usage and increase vectorized throughput, every batch of Monte Carlo

results was bit-packed into 64-bit words. Accumulated tallies of successes or failures were

stored as 64-bit integers, while floating-point calculations (e.g., probability estimates) used

double precision (64-bit floats). These design decisions are intended to maintain numerical

consistency and make use of native hardware operations (such as population-count instructions

for threshold gates).

Execution Procedure

Upon launching the application, the enabling overhead (host-device transfers, JIT compilation,

and kernel configuration) was included in the total wall-clock measurement. Each benchmark

was compiled at the -O3 optimization level to ensure efficient instruction generation. Every

experiment was repeated at least five times, and measured runtimes were averaged to reduce

the impact of transient background processes or scheduling variations on the host system.

12.2 Assumptions and Constraints

The primary objective was to gauge runtime across a set of fault trees that vary widely in size,

logic complexity, and probability ranges within a typical Monte Carlo integration workflow.

The experiments assume independent operation of the test machine, with no significant other

processes contending for GPU or CPU resources. All sampling took place within a single

pass, so the measured wall times incorporate initial kernel launches, memory copies, and

statistical collection of gate outcomes. No specialized forms of hardware optimization beyond

the data-parallel approach (e.g., pinned memory or asynchronous streams) were used.
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12.3 Comparative Accuracy & Runtime

Table 12.1 and Figure 12.1 summarize the accuracy of three approximate quantification

methods Rare-Event Approximation (REA), Min Cut Upper Bound (MCUB), and our GPU-

accelerated Monte Carlo by listing each approach’s mean relative error in the log-probability

(log p) domain, alongside the total MC samples and runtime. Although each fault tree exhibits

its own complexities, several broad trends emerge:

1. REA accuracy strongly depends on the actual top-event probability.

• For trees with very low-probability failures (e.g., baobab1, das9202, isp9605),

where individual component failures rarely coincide, REA’s mean error often

remains near or below 10−2 in log space. This indicates that summing only

the first-order minimal cut sets–assuming higher-order intersections contribute

negligibly–can be valid when the system is indeed dominated by single-component

or few-component events.

• However, for fault trees with moderate or higher top-event probabilities (& 10−2),

REA’s inaccuracy tends to grow (for instance, up to 10−1 in edf9203, edf9204,

and edfpa15b). In these cases, ignoring the overlap of multiple cut sets leads to a

visible systematic error.

2. Min-Cut Upper Bound (MCUB) often mirrors REA but with exaggerated

errors in certain overlapping cut configurations.

• In many models (e.g., cea9601, baobab3, das9601), MCUB closely tracks REA,

suggesting that higher-order combinations remain negligible in those systems.

• Yet, in a few cases involving heavy cut-set overlap (e.g., das9209, row 14), MCUB

soars to a mean log-probability error of ∼ 17, dwarfing REA or Monte Carlo. This

highlights the well-known pitfall: if multiple cut sets are not genuinely “rare” and

substantially overlap, the union bound becomes extremely loose.
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3. Monte Carlo yields more consistent and often dramatically lower numerical

errors for most moderate- to high-probability top events.

• For example, in das9201 (row 6) and edf9203 (row 19), the Monte Carlo error

is well below 10−3, whereas both REA and MCUB can exceed 10−1. In these

situations, ignoring or bounding higher-order intersections proves inadequate,

while direct sampling naturally captures all overlaps.

• However, for fault trees with extremely small top-event probabilities, Monte Carlo’s

variance can become harder to control. For instance, some rows (das9204, das9205,

isp9605, isp9607) show that roughly 108–109 samples are required to constrain

the error within a few tenths in log p. Those entries either exhibit a slightly

higher Monte Carlo error than REA/MCUB or demonstrate that we needed a

disproportionately large sample count (and thus more runtime) to compete with

simple rare-event approximations.

4. Sampling scale and runtime remain surprisingly feasible, even for up to 109

draws.

• Despite some test cases sampling in the hundreds of millions or billions, runtimes

remain ≈ 0.2–0.3 s for most fault trees, rarely exceeding 1 s (see, for instance,

row 10 with 3.3 B samples and ∼ 0.96 s). This indicates that the bit-packed, data-

parallel Monte Carlo engine is highly optimized, making large-sample simulation

a viable alternative to purely analytical approaches for many real-world PRA

problems.

• By contrast, the bounding methods (REA and MCUB) typically run in negligible

time but deliver inconsistent accuracy depending on each tree’s structure. In prac-

tice, a hybrid strategy may emerge: apply bounding methods for quick estimates,

then selectively invoke large-sample Monte Carlo for trees or subsections where

the bounding approximation diverges.
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5. Omitted or Extreme Cases.

• Rows where Monte Carlo entries are missing (e.g., das9209 and edf9206) indicate

difficulty in converging to a useful estimate within a fixed iteration budget. Con-

versely, MCUB shows erratic jumps in some of those same cases, underlining the

fact that both bounding and sampling approaches can struggle in certain outliers.

• Model nus9601 (row 43) lacks all three error columns since no reference solution

was available, reflecting a scenario where direct verification remains pending or

inapplicable. Nevertheless, the completion time of ∼ 0.29 s for a partial exploration

suggests that the structural overhead of large fault trees can still be handled

efficiently.

These results affirm that Monte Carlo methods, when equipped with high throughput

sampling, can achieve the most robust accuracy across a broader spectrum of top-event

probabilities, particularly in configurations where standard cut set approximations fail to

capture significant event dependencies. At the same time, rare-event with exceptionally

small probabilities can pose challenges for naive sampling, revealing the potential need for

adaptive variance-reduction techniques or partial enumerations. In practice, analysts may

combine bounding calculations (REA/MCUB) for quick screening or preparatory checks,

then use hardware-accelerated Monte Carlo to refine those domains most susceptible to

underestimation or overestimation by simpler approximations. Alternatively, for very large

models, where exact solutions may be unavailable, data-parallel Monte Carlo can still estimate

event probabilities without building minimal cut sets.
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Table 12.1: Relative error (Log-probability), Data-Parallel Monte Carlo (DPMC) vs Min
Cut Upper Bound (MCUB) and Rare-Event Approximation (REA).

#
Fault

Tree
Relative Error

∣∣∣log10 (Papprox
Pexact

)∣∣∣ Samples Runtime (s)

REA MCUB DPMC

1 baobab1 1.46× 10−4 1.46× 10−4 7.62× 10−3 2.6× 108 0.27

2 baobab2 6.49× 10−3 6.35× 10−3 1.55× 10−3 2.6× 108 0.21

3 baobab3 1.22× 10−2 1.17× 10−2 2.25× 10−4 2.5× 108 0.26

4 cea9601 9.37× 10−2 9.33× 10−2 2.42× 10−3 1.3× 108 0.27

5 chinese 1.09× 10−2 1.07× 10−2 2.15× 10−3 9.5× 108 0.28

6 das9201 1.27× 10−1 1.23× 10−1 5.50× 10−5 2.4× 108 0.28

7 das9202 7.73× 10−5 2.58× 10−5 1.21× 10−4 5.3× 108 0.30

8 das9203 3.60× 10−2 3.56× 10−2 2.32× 10−4 5.3× 108 0.30

9 das9204 1.69× 10−1 1.69× 10−1 1.14× 10−1 6.2× 108 0.30

10 das9205 9.64× 10−2 9.64× 10−2 2.77× 10−2 3.4× 109 0.96

11 das9206 5.44× 10−2 8.90× 10−4 3.52× 10−4 2.1× 108 0.27

12 das9207 1.19× 10−1 2.46× 10−2 1.37× 10−4 9.6× 107 0.29

13 das9208 4.13× 10−2 3.82× 10−2 9.35× 10−5 2.6× 108 0.31

14 das9209 2.12× 10−2 1.71× 101

15 das9601 5.30× 10−2 5.20× 10−2 6.68× 10−4 1.2× 108 0.26

16 das9701 5.03× 10−2 3.38× 10−2 6.23× 10−4 2.4× 107 0.28

17 edf9201 1.49× 10−1 5.37× 10−2 2.89× 10−4 1.9× 108 0.32

18 edf9202 1.08× 10−1 6.06× 10−3 4.54× 10−4 7.9× 107 0.28

19 edf9203 2.23× 10−1 1.18× 10−1 3.28× 10−4 8.1× 107 0.31

20 edf9204 2.80× 10−1 1.06× 10−1 1.32× 10−4 8.8× 107 0.30

21 edf9205 9.95× 10−2 4.47× 10−2 5.61× 10−5 2.0× 108 0.29
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Table 12.1: Relative Error (Log-Probability), DPMC vs MCUB, REA.

#
Fault

Tree
Relative Error

∣∣∣log10 (Papprox
Pexact

)∣∣∣ Samples Runtime (s)

REA MCUB DPMC

22 edf9206 6.99× 10−3 7.08× 10−3

23 edfpa14b 1.86× 10−1 9.16× 10−2 1.05× 10−3 9.5× 107 0.27

24 edfpa14o 1.87× 10−1 9.19× 10−2 3.40× 10−4 9.9× 107 0.28

25 edfpa14p 3.41× 10−2 1.67× 10−2 5.36× 10−4 2.2× 108 0.30

26 edfpa14q 1.86× 10−1 9.16× 10−2 3.34× 10−4 9.7× 107 0.29

27 edfpa14r 2.49× 10−2 2.10× 10−2 9.34× 10−4 2.2× 108 0.30

28 edfpa15b 2.17× 10−1 9.38× 10−2 4.68× 10−4 1.2× 108 0.29

29 edfpa15o 2.17× 10−1 9.38× 10−2 4.07× 10−5 1.2× 108 0.29

30 edfpa15p 2.53× 10−2 1.01× 10−2 3.55× 10−4 2.7× 108 0.30

31 edfpa15q 2.17× 10−1 9.38× 10−2 6.75× 10−4 1.2× 108 0.29

32 edfpa15r 1.95× 10−2 1.63× 10−2 4.05× 10−4 2.6× 108 0.30

33 elf9601 1.99× 10−2 8.09× 10−5 7.87× 10−5 2.4× 108 0.28

34 ftr10 1.23× 10−1 9.28× 10−4 1.55× 10−4 2.2× 108 0.30

35 isp9601 8.09× 10−2 6.64× 10−2 1.14× 10−4 1.9× 108 0.28

36 isp9602 1.75× 10−2 1.48× 10−2 1.36× 10−3 2.4× 108 0.29

37 isp9603 3.83× 10−2 3.75× 10−2 3.83× 10−3 2.8× 108 0.28

38 isp9604 1.21× 10−1 8.15× 10−2 1.89× 10−4 1.5× 108 0.29

39 isp9605 6.58× 10−3 6.58× 10−3 2.94× 10−2 5.1× 108 0.27

40 isp9606 2.28× 10−2 1.19× 10−2 1.31× 10−4 3.5× 108 0.29

41 isp9607 2.39× 10−2 2.39× 10−2 1.29× 10−1 3.9× 108 0.29

42 jbd9601 1.23× 10−1 1.36× 10−2 1.09× 10−4 5.8× 107 0.28

43 nus9601 1.7× 107 0.29
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12.4 Memory Consumption

As mentioned previously, the memory was set to the maximum allocatable 6GB, constrained

by the NVIDIA GTX 1660 SUPER GPU’s VRAM. Figure 12.2a plots the actual consumed

memory, as a function of PDAG input size and total number of bits sampled per node (gate or

basic-event) per pass. Since there are multiple types of preprocessing steps, all of which affect

the final size of the pruned PDAG, those have been plotted in Figure 12.2b for completeness.

Since the nature of the actual pruning logic is not being benchmarked here, we named these

v1, v2, v3 respectively. The key takeaways are that while some trees are more compressible

than others, nearly all computations were performed by saturating available VRAM. As a

zoomed out version of Figure 12.2a , Figure 12.3 projects trends for the sampled bits count,

as a function of model size, for varying amounts of available RAM.
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Figure 12.1: Relative error (Log-probability) for Data-Parallel Monte Carlo (DPMC) vs Min Cut Upper Bound (MCUB) and
Rare-Event Approximation (REA)
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Figure 12.2: Comparison of sampled bits per event per iteration.
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Part IV

Refinements
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Chapter 13

Randomness Guarantees for

Counter-Based Sampling

Counter-based pseudorandom number generators (PRNGs) such as Philox promise repro-

ducible parallel streams and an astronomically long period, yet their practical adequacy is

ultimately decided by (i) the absence of exploitable correlations in the relevant statistical

model and (ii) the feasibility of quickly verifying that those correlations remain negligible. In

this chapter, we will develop a two-layer strategy that combines formal worst-case bounds

with a lightweight empirical battery, complementing the implementation details set out in

Chapter 8.

13.1 Recap of the Philox 4× 32-10 design

(i) Permutation structure. Each call applies a ten-round bijection π : F128
2 → F128

2 to a

monotonically increasing counter S ∈ F128
2 and a 64-bit key K. Hence the output

sequence is fundamentally sampling without replacement from the 2128 counter states.

(ii) Round diffusion. The multiplication constantsMA = 0xD2511F53 andMB = 0xCD9E8D57

are full-period in F232 ; together with the Feistel shuffle they guarantee that every output
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bit depends on every input word after at most 7 rounds [75].

(iii) Counter assignment. We inject the ND-range indices and iteration number according to

subsection 8.3.

C(ix, iy, iz, t) =
(
ix + 1, iz + 1, iy + 1, (t+ 1)� 6

)
,

The mapping is injective over the entire execution envelope of the Monte Carlo kernel

and thus precludes inter-thread collisions.

13.2 Where could correlations still arise?

We distinguish structural from procedural hazards.

13.2.1 Structural Issues

• Low-dimension projections. Any counter-based PRNG is perfectly equidistributed

only up to some finite dimension kmax. For Philox-4×32-10 the published bound is

kmax = 8, with the worst missing pattern frequency bounded by 2−32.

• Non-linear Boolean mappings. Our basic-event kernel applies the predicate [r < T ]

to each 32-bit word. Because the branch is non-linear in r, higher-order dependencies

could in principle leak through the multiplication structure of Philox.

13.2.2 Procedural Hazards

• Counter reuse. A logical error that maps two work-items to the same counter destroys

independence entirely.
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Failure Mode Effects

Counter Collisions Perfect correlation between streams; estimator bias O(1).

Rounds Misconfigured Potential linear relations of dimension < 32, detected by

TestU01 Crush.

High-Order Algebraic Bias Bias in k-bit parities bounded by 2−10k (9).

Low-Dimension Spectral Gaps Lattice discrepancy ≤ 2−32; below empirical detectability for

p ≤ 10−9.

13.3 Two Analytic Bounds on Randomness Loss

13.3.1 A Coupon-Collector Coupling Bound

Let DT be the joint law of the first T 32-bit words emitted by Philox and let U⊗T be IID

uniform samples. Because π is a bijection,

∥∥DT − U⊗T
∥∥

TV ≤
T (T − 1)

2 2128
(≤ 5.4× 10−20 for T ≤ 232), (13.1)

where ‖·‖TV denotes total-variation distance.1 Even for a 17 GiB run (≈ 232 outputs) the

bias is eight orders of magnitude smaller than the stochastic error O(T−1/2) of the Monte

Carlo estimator.

13.3.2 Walsh–Hadamard (linear) Bias after Ten Rounds

Theorem 9. For Philox-4×32-r with r ≥ 10 and any non-trivial Walsh coefficient W (S) =

(−1)〈a,S〉 depending on a single 32-bit output word,

∣∣EW (S)
∣∣ ≤ 2−10.

1Proof: classical coupling of sampling with vs. without replacement; see, e.g., [58, Ch. 5].
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Consequently the bias of any k-bit parity satisfies ≤ 2−10k.

Idea of proof. Following Salmon et al. [75], each round multiplies the algebraic degree by 1.

The initial degree 1 therefore grows to at least r. The bias of a degree-d Boolean polynomial

on Fn
2 is upper-bounded by 2−d (Parseval). Setting d = r with r = 10 yields the claim.

The value 2−10 ≈ 10−3 lies again far below the 10−2 sensitivity threshold of modern

empirical batteries (TestU01 BigCrush, PractRand at 2TiB).

13.4 Empirical Testing

The formal bounds above certify worst-case deviations; they do not preclude implementation

bugs. We therefore propose implementing a few empirical tests.

Step 1. Single-stream battery. Generate 238 bytes (256 GiB) from one counter stream

and pipe the hex output to PractRand with default settings. The run aborts on the first

p-value < 10−5.

Step 2. Parallel-stream interleaving. Spawn 104 independent counters, interleave the

words, and rerun a 32 TiB PractRand test. This configuration mimics the GPU grid more

faithfully.

Step 3. Boolean-threshold χ2. Fix thresholds T ∈ {0, 231, 232− 1}. For each T , record 1012

Bernoulli outcomes [r < T ]. The resulting counts are compared to the exact Binomial(n, p)

distribution via a one-degree-of-freedom χ2-test. Deviations beyond the 99.999 % quantile

would flag a failure.

Even though no finite test can prove perfect randomness, the combination of the analytical

bounds in Equation 13.1 and Theorem 9, along with robust testing can lead to a falsifiable

and reproducible criterion whose sensitivity exceeds the sampling error of every Monte Carlo

study reported in this thesis. Consequently, we claim that once these tests are implemented
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and verified, PRNG-induced bias should be negligible in the strict statistical sense that it is

dominated by the O(N−1/2) variance of the estimator itself.

13.5 In-situ Statistical Diagnostics and Post-run Vali-

dation

A practical Monte Carlo pipeline benefits from ongoing self-evaluation: every run can (and

should) produce numerical evidence that the pseudo–random input behaved as expected. To

this end we embed a lightweight but mathematically complete family of diagnostics that

complement the external test batteries of Section 13.4. All quantities are computed host-side

after each iteration/pass, so that they do not perturb the sampling process itself.

13.5.1 Accuracy metrics for the point estimator

Let X1, . . . , XN ∈ {0, 1} be the Bernoulli outcomes produced by a given kernel invocation

and let

p̂ =
1

N

N∑
i=1

Xi (13.2)
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be the empirical probability of success. Denote by p∗ the known ground-truth probability

against which the method is benchmarked. We record the following scalar summaries:

∆ = |p̂− p∗| (absolute error), (13.3)

δ =
∆

p∗
(relative error, when p∗ > 0), (13.4)

b = p̂− p∗ (signed bias), (13.5)

MSE = (p̂− p∗)2, (13.6)

log10∆ = log10 |p̂− p∗|, (13.7)∣∣log10 p̂− log10 p∗
∣∣ = absolute logarithmic error. (13.8)

These indicators expose both scale-dependent and scale-free deviations, allowing for meaningful

comparisons across a broad range of target probabilities.

13.5.2 Sampling-theory Diagnostics

Under the classical Central Limit Theorem the standard error of p̂ equals

SE(p̂) =

√
p̂ (1− p̂)

N
. (13.9)

We therefore form the z-score

z =
p̂− p∗
SE(p̂)

, pval = 2
(
1− Φ(|z|)

)
= erfc

(
|z|/
√
2
)
, (13.10)

which should follow N (0, 1) in the absence of bias. In addition, the two—sided (1 − α)

confidence interval [
p̂− z1−α/2 SE(p̂), p̂+ z1−α/2 SE(p̂)

]
(13.11)
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is checked post hoc for whether it actually covers p∗. Tracking the empirical coverage across

many independent runs yields a sensitive alarm for unmodeled correlation.

13.5.2.1 Sample–size adequacy.

For a user-requested absolute precision ε at confidence 1 − α we estimate the theoretical

requirement

nreq =
z21−α/2 p∗(1− p∗)

ε2
, ρ =

N

nreq
(13.12)

and report the ratio ρ. Values ρ < 1 denote under-sampling, while ρ� 1 signals potential

waste of compute resources.

13.5.3 One-degree-of-freedom χ2 goodness-of-fit

Aggregating the N Bernoulli trials into the counts O1 =
∑

iXi and O0 = N−O1, the classical

statistic

χ2 =
(O1 − E1)

2

E1

+
(O0 − E0)

2

E0

, E1 = Np∗, E0 = N(1− p∗) (13.13)

obeys a χ2 distribution with one degree of freedom. The right-tail probability

P (χ2 ≥ x) = erfc
(√

x/2
)

(13.14)

provides an unconditional test for mis-specification even when p∗ is extreme.

The internal diagnostics scrutinize exactly the data that feed the scientific conclu-

sion—namely the Monte Carlo estimate of an event probability, rather than a proxy bitstream.

Their deterministic thresholds therefore align directly with the desired error tolerances. Empir-

ical evidence collected to date shows no systematic rejection at the α = 0.01 level, reinforcing

the analytic guarantees of Section 8.2 and the large-scale batteries of Section 13.4.
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Chapter 14

On-the-Fly Updates to Convergence

Policy

Monte–Carlo probability estimators suffer from a sampling error that vanishes only as

O
(
1/
√
n
)
with the number of Bernoulli trials n. Beyond a certain point additional samples

yield diminishing returns, so a principled convergence policy must dictate when computation

may be halted. We adopt a composite policy that synthesizes three complementary viewpoints

on uncertainty:

1. Frequentist margin-of-error — classical Wald bounds in linear and logarithmic

probability space guarantee nominal coverage of the unknown success probability.

2. Bayesian credible intervals — a Jeffreys-prior posterior quantifies belief updating

at any sample size and excels for rare events.

3. Information-theoretic gain — the reduction in Shannon entropy after each batch

measures how much new information the latest data convey about the parameter itself.

The notation introduced in Section 7.4 remains in effect; in particular each node v∈V is

evaluated over T Monte–Carlo iterations with N=BPω trials per iteration.

175



14.1 Point Estimates, Sampling Variance

Let sv be the number of one–bits observed for node v after T iterations (Chapter 10). The

unbiased estimator and its standard error are

p̂v =
sv
TN

, σ̂v =

√
p̂v
(
1− p̂v

)
TN

. (14.1)

Assuming TNp̂v and TN
(
1 − p̂v

)
both exceed roughly 10[2]1, the Central Limit Theorem

implies the half–width

hv(z) = z σ̂v (14.2)

contains p̂v inside a two–sided normal confidence interval with probability erf(z/
√
2).

14.2 Competing Statistical Paradigms

Monte–Carlo early-stopping can be formalized either in a frequentist or a Bayesian decision-

theoretic framework. Both paradigms aim to certify that the estimator p̂v lies within a

tolerance band around the (unknown) truth pv, yet they differ in the interpretation of

probability and in how uncertainty is propagated.

• Frequentist (Wald) policy: randomness is limited to the sampling process; pv is

treated as fixed and confidence intervals derive from large-sample normal theory.

• Bayesian policy: treats pv itself as random with a prior distribution and bases inference

on the posterior credible interval.

Neither policy strictly dominates the other: Wald intervals are (marginally) computa-

tionally cheaper and asymptotically exact; Bayesian intervals are exact at any sample size

and exhibit superior coverage for rare events. We therefore adopt a dual-policy architecture,

halting the computation once all monitored nodes satisfy the tightest criterion.
1A widely cited “np ≥ 10’’[2] [24]
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14.3 Frequentist (Wald) Margin–of–Error Criterion

A user supplies a relative margin–of–error εrel∈(0, 1) (typical default 0.1%). Rewriting hv(z)

as a fraction of the point estimate yields the condition

hv(z)

p̂v
≤ εrel. (14.3)

Inserting (14.2) gives the minimum sample budget

N (v)
ε =

⌈
z2 p̂v

(
1− p̂v

)(
εrel p̂v

)2 ⌉
. (14.4)

Hence additional trials are scheduled until TN ≥ N
(v)
ε for every monitored node.

Interpretation.

Equation (14.4) stems from the textbook formula N ≥ z2p(1 − p)/ε2, implicitly assuming

pv ≈ p̂v. In finite samples the approximation may underestimate the true half-width whenever

p̂v lies in the extreme tails. The Bayesian policy introduced next remedies this limitation by

integrating over posterior uncertainty instead of relying on a single point estimate.

14.4 Bayesian Credible–Interval Criterion

14.4.1 Jeffreys Prior and Posterior Distribution

Adopt the non-informative Jeffreys prior for a Bernoulli proportion,

π(pv) = Beta
(
1
2
, 1
2

)
, 0 < pv < 1,
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which is invariant under re-parametrization and yields near-optimal frequentist coverage.

After observing sv successes and fv = TN − sv failures the posterior is

pv | Yv ∼ Beta
(
α, β

)
, (α, β) =

(
sv +

1
2
, fv +

1
2

)
.

14.4.2 Central (1− α) Credible Interval

Let 0 < γ < 1 denote the target two-sided credibility. With t = (1− γ)/2 we form

CBayes
v,γ =

[
qt, q1−t

]
,

where qq is the q-quantile of Beta(α, β). Its half–width is

hBayes
v (γ) =

q1−t − qt
2

.

14.4.2.1 Stopping Criterion

Define a relative tolerance εBayes
rel identical to that used in linear space. Convergence is declared

when
hBayes
v (γ)

p̂v
≤ εBayes

rel , (14.5)

which rearranges to the sample–size forecast

N
(v)
Bayes =

⌈
z2 pv(1− pv)(
εBayes

rel p̂v
)2 − (α + β + 1)

⌉
. (14.6)

14.5 Logarithmic–Space Refinement

Rare events (pv � 1) admit improved diagnostics when the analysis is performed in the

logarithmic domain. Define `v = log10 pv and its estimate ̂̀v = log10 p̂v. Propagating the
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variance from (14.1) via first–order Taylor expansion gives

Var
(̂̀

v

)
≈ σ̂2

v

p̂2v (ln 10)2
. (14.7)

Accordingly the logarithmic half–width is

hlog
v (z) =

z σ̂v
p̂v ln 10

. (14.8)

A fixed absolute tolerance εlog (expressed in decades) produces the criterion

hlog
v (z) ≤ εlog, (14.9)

which translates into a second sample–size forecast

N
(v)
log =

⌈
z2
(
1− p̂v

)
p̂v (εlog ln 10)2

⌉
. (14.10)

14.6 Tracking Shannon Information Gain

The preceding criteria are variance–based and symmetric around p̂v. To guard against stalls

where the point estimate barely changes yet the variance decays slowly we track the Shannon

information gain of a Beta(α, β) posterior (cf. Eq. (11) in Section 8.2). After a batch with s

successes and f failures the reduction in entropy is

Ibatch = H
(
Beta(α, β)

)
−H

(
Beta(α + s, β + f)

)
[bits]. (14.11)

Sampling is considered saturated once

Ibatch < Imin, (14.12)
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for a user–defined threshold Imin (default ≈ 10−4 bits). Treat the unknown success probability

pv as a random variable with a Jeffreys prior Beta(1
2
, 1
2
). After s successes and f failures the

posterior is Beta(α, β) with (α, β) = (s+ 1
2
, f + 1

2
). Its Shannon differential entropy

H
(
Beta(α, β)

)
= ln

(
B(α, β)

)
− (α− 1)ψ(α)− (β − 1)ψ(β) + (α + β − 2)ψ(α + β) [nats],

(14.13)

quantifies the average message length required to encode pv under an ideal code. Converting

ln to base 2 multiplies the result by 1/ ln 2, yielding bits as the unit. The increment (14.11)

is therefore the mutual information between the most recent batch of data and pv.

Interpretation.

A value Ibatch = 10−3 means the posterior uncertainty has shrunk by one thousandth of a bit.

In coding terms the optimal binary description of pv is now 0.1% shorter than before the

batch was processed.

14.6.1 Units, Range and Practical Thresholds

• Units. Bits (log2 of a probability measure).

• Upper bound. A single Bernoulli trial can convey at most one bit of information.

Under Jeffreys’ prior the first few batches typically contribute 0.5–0.8 bits; thereafter

the gain decays rapidly.

• Asymptotic decay. For large α+β the series expansion ofH gives Ibatch ≈ (2 ln 2)−1(α+

β)−1, i.e. O
(
N−1

)
with N the cumulative sample size.

• Threshold choice. Setting Imin ≈ 10−4 bits balances two objectives: (i) the numerical

precision of double floating–point (≈ 10−15) and (ii) the overhead of an extra Monte–

Carlo iteration relative to the cost of writing an output record. Empirically the wall–clock

savings plateau once Imin falls below 10−4.
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This entropy-based convergence criteria complements our variance-based criteria well for

a few reasons.

1. Scale invariance. Because entropy is dimensionless it permits uniform interpretation

across nodes regardless of the magnitude of pv.

2. Early plateau detection. Half–width based criteria can stagnate when p̂v changes slowly;

entropy continues to decrease monotonically as soon as any information is gained.

3. Guaranteed non–negativity. The mutual information is always non–negative, so the

inequality (14.12) cannot be violated after it first becomes true.

Collectively these properties justify the inclusion of Ibatch in the composite rule (§ 14.7)

and establish a principled, information–optimal stopping condition.

14.7 Composite Stopping Rule

Having derived four complementary precision forecasts—linear-space Wald (N (v)
ε ), log-space

Wald (N (v)
log ), Bayesian credible–interval (N (v)

Bayes), and an information-theoretic forecast (N (v)
info)

obtained from the asymptotic decay of Shannon information—we now fuse them into a

single, conservative budget. The guiding principle is simple: if any viewpoint still demands

additional evidence, sampling must continue. The information-theoretic forecast follows from

the large-sample approximation Ibatch ≈
(
2 ln 2

)−1
N−1 (cf. § 14.6.1) and reads

N
(v)
info =

⌈
(2 ln 2) I−1

min
⌉
. (14.14)

Combining all four budgets gives

N (v)
req = max

(
N (v)

ε , N
(v)
log , N

(v)
Bayes, N

(v)
info

)
. (14.15)

Let Nreq = maxv∈V N (v)
req . The run terminates the first time both conditions hold:
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1. Precision achieved: TN ≥ Nreq. Every monitored node meets (14.3), (14.9), and

(14.5) at the requested confidence level.

2. Diminishing returns: the most recent batch satisfies (14.12), signaling that further

sampling conveys less than Imin bits of new information.

The second clause rarely triggers before the first but provides robustness when variance

estimates are noisy during early burn–in. In practice, after every Monte–Carlo iteration,

we update the three projected budgets, check the information–gain threshold, and decide

whether another iteration is warranted.

14.8 Interaction with External Budgets

Real-world deployments rarely afford an unlimited sampling horizon: a solver is often con-

strained not only by a prescribed iteration budget but also by a wall-clock budget. Let

Tmax ∈ N and τmax ∈ R>0

denote the maximum number of Monte–Carlo iterations and the maximum permissible

wall-clock time, respectively. Define

Tε =
⌈
Nreq/N

⌉
, Tτ = min

{
t ∈ N

∣∣ τ(t) ≥ τmax

}
,

where Nreq is the composite sample budget from Eq. (14.15), N = BPω is the trial count

per iteration, and τ(t) records the elapsed wall-clock time after t iterations. The effective

stopping time of the solver is therefore

T ? = min
{
Tε, Tmax, Tτ

}
. (14.16)

Equation (14.16) formalizes a simple yet powerful rule: sampling ceases as soon as any of

the three limits is hit. The convergence criterion (Tε) guarantees statistical reliability, Tmax
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enforces an upper bound on computational effort measured in iterations, and Tτ prevents a

runaway execution in wall-clock time whenever individual iterations are more expensive than

anticipated.

Practical implications. If the external budgets are large (Tmax, τmax → ∞) the solver

reverts to a purely precision-driven regime, halting at Tε. Conversely, when either budget is

small the risk of non-convergence is quantified by the residual half-widths and information

gain at T ?; these diagnostics allow the practitioner to evaluate whether additional resources

are warranted.

The next subsection distills Eq. (14.16) into an operational control loop whose structure

mirrors the logical precedence of the three terminating events.

14.9 Algorithmic Workflow

Algorithm 4 Adaptive early-stopping procedure per node v
Require: Relative tolerances εrel, ε

log; confidence z; iteration budget Tmax; time budget τmax
1: τstart ← current wall-clock time
2: Initialize sv ← 0, fv ← 0, (α, β)← (1

2
, 1
2
)

3: while true do
4: if elapsed_time(τstart) ≥ τmax then break
5: if iteration_count ≥ Tmax then break
6: Run one Monte–Carlo iteration and tally (∆s,∆f)
7: sv += ∆s, fv += ∆f
8: Update (α, β) and compute Ibatch via (14.11)
9: Evaluate p̂v, σ̂v from (14.1)

10: Compute N (v)
ε , N (v)

log , N
(v)
Bayes, N

(v)
info

11: if (14.15) and (14.12) hold then break
12: end while
13: return p̂v, credible intervals, diagnostics

The loop tests the time budget first, followed by the iteration budget, and finally the

precision criteria. This ordering ensures that external contracts (time and iterations) are
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honored even when variance estimates are still immature. At the same time, Eq. (14.16)

guarantees that whenever resources permit, the run terminates exclusively on the basis of

statistical sufficiency.
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Chapter 15

Monte–Carlo Estimation of

Common-Cause Failures

Scope. Section 4.1 introduced the probabilistic directed acyclic graph (PDAG) that unifies

event-tree and fault-tree logic. The present chapter explains how common-cause failures

(CCFs) are embedded into that same graph without altering the execution, layering, or

sampling mechanisms described in Chapter 7. The discussion complements the statistical

CCF models surveyed in Section 2.3 (Common-Cause Failures) by detailing (i) how a CCF

group is mapped to PDAG nodes and edges, and (ii) why no additional variance-reduction or

correlation-handling is required inside the Monte-Carlo kernels.

15.1 CCF Groups and Their Place in the PDAG

A CCF group (CCFG) is a non-empty set C = {c1, c2, . . . , cm} ⊆ B of basic events that share

at least one latent cause of failure. The defining property is the existence of a random variable

Ξ such that

Pr[Xci = 1 | Ξ] is identical ∀i.

Three structural requirements ensure compatibility with the PDAG:
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1. No two CCFGs overlap: Ci ∩ Cj = ∅ for i 6= j. Overlaps are merged before analysis.

2. Every basic event belongs to at most one CCFG; components that are demonstrably

independent stay outside any CCF modeling.

3. The PDAG remains acyclic after inserting the CCF structures (see Section 15.3).

CCFG membership is derived from design information (shared components, common location),

operating experience, or expert elicitation and is therefore an input to the compilation

workflow.

15.2 Parametric CCF Models – A Recapitulation

Section 2.3 enumerated several statistical formalisms for quantifying common- cause prob-

abilities: the Basic-Parameter Model, Alpha-Factor Model, Multiple- Greek-Letter Model,

Binomial Failure-Rate Model, and the one-parameter Beta-Factor simplification. These mod-

els differ mainly in the parameter vector θC they attach to a group C and in how that vector

is estimated from data.

For present purposes, we require only the mapping

θC −→
{
Pr[exactly k failures]

}m
k=1

= {πC,k}mk=1,

where πC,k is the unconditional probability that any specific subset of size k in C fails owing

to the common cause during the reference mission time. Table 15.1 lists the closed-form

mappings for the most widespread models.

The remainder of the chapter is model-agnostic: once the vector {πC,k} is known, the

graph-construction steps are identical.
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Table 15.1: Mapping of model parameters to multiplicity probabilities πC,k. The symbol
m = |C| denotes the group size.

Model πC,k

Beta-Factor (β) πk =


1− β k = 1

β k = m

0 otherwise
Alpha-Factor (αk) πk =

αk(
m−1
k−1

)
Basic-Parameter (Qk) πk =

Qk∑m
j=1

(
m−1
j−1

)
Qj

MGL (β, γ, . . . ) see Section 2.3 for m ≤ 4 closed forms

BFR (ν, p) πk =
ν

λc

(
m

k

)
pk(1− p)m−k (k < m), πm =

λ(i)

λc

15.3 Embedding a CCF Group into the PDAG

Let C = {c1, . . . , cm} be a CCFG with multiplicity probabilities πC,k. The insertion algorithm

introduces one auxiliary CCF-root node GC and at most m− 1 CCF-shadow nodes. All

new nodes are classified as gate-type in the PDAG (set G), thereby preserving the basic-event

set B.

15.3.1 Step 1: Replace independent leaves.

Each original basic event ci is kept in situ but its independent failure probability is scaled to

account only for the independent portion of failure, p(I)ci = (1−λccf) pci , where λccf =
∑

k≥2 πC,k.

This is equivalent to conditioning on the latent variable Ξ = 0 (no common-cause shock).

15.3.2 Step 2: Insert CCF-root gate.

A new node GC collects two input classes:

• an auxiliary shock variable SC that fires with probability λccf; and
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• the set of leaves c1, . . . , cm (independent parts). The gate type is OR.

The logical meaning is

GC = SC ∨ c1 ∨ · · · ∨ cm.

If the group is embedded inside redundancy logic this construction ensures that an induced

common-cause shock can bypass otherwise protective diversity.

15.3.3 Step 3: Modeling multiplicity.

Some CCF models specify not only whether any failure occurs but also how many components

are involved. To reproduce multiplicity‐specific probabilities we attachm−1mutually exclusive

shadow gates {H(2)
C , . . . , H

(m)
C } as children of SC. Shadow gate H(k)

C triggers exactly k of the

components via an OR-of-ANDs structure:

H
(k)
C =

∨
K⊆C
|K|=k

(∧
c∈K

Fc

)
,

where each Fc is a Boolean indicator that component c is affected by this particular shock

realization. The shadow gate is assigned probability πC,k. Because the shadow nodes feed into

the same outputs as the original ci leaves, downstream logic remains unaltered.

15.3.4 Step 4: Maintain acyclicity.

All newly created edges originate from fresh nodes introduced in this step; no existing PDAG

edge is re-directed upstream. Therefore the global acyclicity invariant is preserved trivially.

15.3.5 Resulting subgraph.

Figure 15.1 illustrates the transformation for m = 3 under a Beta-Factor model.
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c1

c2

c3

GC

SC

· · ·

Figure 15.1: Embedding a three-component CCF group under the Beta-Factor model. The
shock variable SC fires with probability β and forces simultaneous failure of c1, c2, c3. The
independent portions (1− β)pci remain as separate leaves.

15.4 Interplay with the Monte-Carlo Execution Model

The layered kernel strategy of Chapter 7 assumes that each leaf node is associated with

an independent random draw. Introducing SC and the shadow nodes does not violate this

assumption:

• The augmented leaves {SC, c1, . . . , cm} are mutually independent. Correlation is intro-

duced solely through the logical structure (shared downstream paths), not through

coupled random numbers. Therefore the existing bit-packed sampling kernel applies

verbatim, drawing Bernoulli variates for each auxiliary leaf.

• Any path in the PDAG traverses at most one of the mutually exclusive shadow nodes,

ensuring that correlated failures are represented without double counting.

• Convergence diagnostics (Chapter 14) operate on the empirical proportion of top-

level node failures. The presence of CCF nodes merely changes those proportions; the

equations from Chapter 14 is untouched.

Consequently, no specialized sampling algorithm is required; the existing Monte-Carlo

pipeline seamlessly handles CCFs once the PDAG has been augmented as per Section 15.3.
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15.5 Worked Example

Consider a two-pump parallel cooling loop where either pump suffices (OR logic) but the

pumps share a common lubrication system. Let the independent failure probabilities be

pA = 3.0× 10−3 and pB = 3.0× 10−3, with a Beta-Factor β = 0.15 for the common lubricant

leak.

Mapping.

The CCFG is C = {A,B} (size m = 2). The shock variable probability is λccf = β = 0.15;

the independent portions become (1− β)pA and (1− β)pB.

PDAG augmentation.

Following the procedure, we create nodes SC and GC; GC feeds into the existing OR-gate that

models pump redundancy. No other structural changes are necessary.

Numerical impact.

The top event ‘‘cooling loop fails’’ now has probability

Pr[fail] = β(1− (1− pA)(1− pB))︸ ︷︷ ︸
CCF term

+ (1− β)pApB︸ ︷︷ ︸
dual independent

.

Plugging the numbers yields Pr[fail] = 0.15× 6× 10−3 + 0.85× 9× 10−6 ≈ 9.1× 10−4, which

is dominated by the CCF term.

Common-cause failure groups are incorporated into the unified PDAG by introducing

auxiliary shock and shadow nodes whose probabilities encode any of the established statistical

models. The transformation is purely structural and preserves acyclicity, thereby allowing

the existing layered Monte-Carlo solver, convergence monitor, and data-parallel kernels to
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operate without modification. The approach thus unifies CCF treatment with the broader

DAG- based reliability analysis framework.

15.6 Convergence Guarantees for CCF–Augmented Monte–

Carlo Estimates

Let Y (t) be the indicator of a user–selected PDAG node (”event of interest”) during Monte–

Carlo iteration t ∈ {1, . . . , T}. The simulator samples – independently across iterations – the

failure state of every leaf, including auxiliary CCF leaves SC and the original basic events.

Define

p̂T =
1

T

T∑
t=1

Y (t) and σ2 = Var[Y (1)].

We prove that p̂T is an unbiased, strongly consistent estimator of the true probability

p = Pr[Y (1) = 1] and that it obeys the usual Central Limit Theorem (CLT), irrespective of

how many CCF groups the event intersects.

15.6.1 Assumptions

1. Iteration independence. All random variables associated with iteration t are inde-

pendent of those in iteration t′ 6= t. This is enforced by counter-based PRNGs whose

counters differ in at least one component across iterations.

2. Finite variance. Because Y (t) ∈ {0, 1}, we have σ2 ≤ 1/4 <∞.

3. CCF construction. Each CCF group is represented exactly as in Section 15.3; in

particular the auxiliary shock variable SC is independent of all other leaf variables.

Correlation among components is introduced solely through deterministic logic.
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15.6.2 Unbiasedness and Strong Law of Large Numbers

The event indicator in a single iteration is a measurable function of the leaf sample vector

X(t) = (X
(t)
b )b∈B∪{SC}. Given Assumption 1, (Y (t))t≥1 is an independent and identically

distributed (i.i.d.) sequence with mean E[Y (1)] = p. The Monte–Carlo estimator is therefore

unbiased:

E[p̂T ] = p ∀T.

By Kolmogorov’s Strong Law of Large Numbers applied to bounded i.i.d. variables, we have

almost sure convergence:

p̂T
a.s.−−→ p (T →∞).

Because Y (t) are i.i.d. with finite variance σ2, the classical Central Limit Theorem yields

√
T (p̂T − p)

D−→ N
(
0, σ2

)
.

Hence the half–width of a (1− α) two–sided normal confidence interval is

hT (z) = z
σ√
T
, z = Φ−1(1− α/2),

identical in form to Eq. (14.2). The presence of CCF logic can at most change σ2 (often it

increases variance because failures become more clustered) but does not affect the O(1/
√
T )

convergence rate.

15.6.3 Discussion of Dependence within Iterations

Dependence between leaves within the same iteration – introduced by shared shock variables

– is irrelevant for the CLT because the theorem operates on inter-iteration independence.

The proof therefore remains valid under any Boolean post-processing of the leaves, including

complex mixtures of independent and common–cause failures.
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Under the stated assumptions the Monte–Carlo estimator for any PDAG node, whether or

not it participates in common-cause groups, enjoys the same unbiasedness, strong consistency,

and O(1/
√
T ) confidence– interval half–width as in the purely independent-failure case.

Consequently the convergence diagnostics of Chapter 14 apply verbatim to CCF-augmented

probabilities.
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Chapter 16

Monte-Carlo Evaluation of Importance

Measures

Reliability practitioners rarely stop at a mere point estimate of the top‐event probability. Once

a probabilistic directed acyclic graph (PDAG) has been quantified, the next natural question

is “which basic events matter the most?”. Importance measures translate raw probabilities

into actionable rankings that drive maintenance decisions, design improvements, and risk

communication. Classical definitions dating back to Birnbaum, Fussell–Vesely, are revisited

in §2.6 of this dissertation. The present section extends those definitions to the Monte-Carlo

solver introduced in Chapter 7 and details how the required statistics are gathered, reduced,

and reported without incurring additional sampling runs.

Notation.

Let Z ∈ {0, 1} be the indicator of system failure (i.e. the value of the root gate) and let

Xi ∈ {0, 1} denote the state of basic event i. A single Monte–Carlo iteration produces a

batch of N Bernoulli trials (§7.3.4); repeating the experiment for T iterations yields TN

independent samples
{
(Z(t,j), X

(t,j)
i )

}
with indices t=1 . . . T (iteration) and j=1 . . . N (trial

within an iteration).
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16.1 Minimal Sufficient Statistics

For each basic event the Monte-Carlo engine maintains exactly three counters:

si =
∑
t,j

X
(t,j)
i (one–bits of Xi)

s0 =
∑
t,j

Z(t,j) (one–bits of Z)

s0,i =
∑
t,j

Z(t,j)X
(t,j)
i (joint one–bits)

(16.1)

plus the common sample size n= TN . Eq. (16.1) constitutes a minimal sufficient set for

all first–order importance measures considered herein: every statistic can be expressed as a

function of (s0, si, s0,i, n).

The counters are accumulated on–device during the tally stage (§10). Line popcount(root

&& event) adds a single ‘&‘ and ‘popcount‘ instruction per sample word, yet obviates the

need for any post–simulation reprocessing.

16.2 Estimators for Classical Measures

Define the unbiased estimators

p̂0 =
s0
n
, p̂i =

si
n
, p̂0,i =

s0,i
n
.

16.2.1 Birnbaum marginal importance (MIF).

For coherent systems the Birnbaum index equals the covariance scaled by the component

variance:

MIFi =
Cov(Z,Xi)

Var(Xi)
=

p̂0,i − p̂0p̂i
p̂i
(
1− p̂i

) . (16.2)

If p̂i is close to 0 or 1 a small pseudo–count ε is added to avoid numerical blow‐up.
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16.2.2 Critical importance (CIF).

CIF normalizes MIF by the top–event probability

CIFi =
MIFi p̂i
p̂0

. (16.3)

16.2.3 Diagnostic importance (DIF).

DIFi =
p̂0,i
p̂0 p̂i

. (16.4)

16.2.4 Risk achievement (RAW) & reduction worth (RRW).

Set p(i=1)
0 = p̂0,i/p̂i and p(i=0)

0 =
(
p̂0 − p̂0,i

)
/(1− p̂i). Then

RAWi =
p
(i=1)
0

p̂0
, RRWi =

p̂0

p
(i=0)
0

. (16.5)

All numerators and denominators derive directly from the counters in Eq. (16.1).

16.3 Confidence Intervals

Because the estimators are smooth functions of sample proportions, the CLT allows a

delta–method approximation. Denote by s = (s0, si, s0,i)
T and let g(s) be one of the above

measures. The first‐order Taylor expansion around the expectation yields

Var
[
g(s)

]
≈ ∇gTΣ∇g,

where Σ is the 3×3 covariance matrix of (s0, si, s0,i). Closed‐form expressions are lengthy but

straightforward.
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16.4 Layered Evaluation Algorithm

• Sampling – basic‐event kernel generates bit–packed outcomes X(t,·)
i and stores them

in device buffers.

• Gate evaluation – logic kernels propagate the state upward and write the root buffer

Z(t,·).

• Tally popcount – the tally kernel counts si and s0 via ‘popcount‘ operations.

• Joint accumulation – in the same work‐item the bitwise and Z&Xi is popped‐counted

to obtain s0,i.

• Host reduction – after iteration t the per–group partials are atomically accumulated;

the host holds only updated scalars.

• Importance update – when invoked, the host computes Eqs. (16.2)–(16.4) and their

confidence intervals without any device traffic.

16.5 Alternate Evaluation Strategies

16.5.1 Finite–difference XOR.

A popular textbook derivation expresses the Birnbaum index as the exclusive‐or of two

counterfactual evaluations F
(
Xi=1

)
and F

(
Xi=0

)
. Implementing this idea literally requires

two additional gate passes per variable. For large fault trees the quadratic cost outweighs any

conceptual elegance.

16.5.2 Post‐hoc analysis kernels.

One may postpone the computation of s0,i until the user demands an importance report. A

dedicated kernel then reads the stored buffers, performs the and+popcount, and returns
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the joint counts. This variant doubles memory traffic but leaves the critical sampling path

untouched and allows on‐demand higher–order statistics (e.g. covariance matrices). In the

solver implementation the feature is hidden behind the command‐line flag --mc-extra-stats.

16.5.3 Default design choice.

The in–tally covariance accumulation incurs one extra integer instruction per 64 Bernoulli

trials and scales to thousands of variables with negligible overhead. It therefore remains the

solver’s default, while post–hoc kernels serve as an opt-in diagnostic tool.
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Chapter 17

Dealing with Rare Events Using

Importance Sampling

17.1 Motivation and Context

Monte-Carlo (MC) estimation of system–level failure probabilities P is straightforward when

the underlying basic‐event probabilities lie in a moderate range [10−5, 10−1]. In nuclear PRA,

however, we routinely encounter events whose true occurrence probability is p� 10−6. For

such ultra-rare events the vanilla MC estimator requires an astronomical number of trials

before even a single failure is observed, let alone before the half-width of the 95% confidence

interval satisfies the convergence criterion of Chapter 14.

Variance–reduction techniques provide a remedy. Among the class of stratified, splitting,

and importance-biased methods, importance sampling (IS) is the most flexible because it leaves

the graph structure untouched while biasing the sampling distribution of the basic events.

This section introduces the theory, derives the IS estimator in the notation already used for

the MC solver (Section 8.2, Chapter 10), and analyzes the resulting variance reduction.
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17.2 Fundamentals of Importance Sampling

17.2.1 Probability Space Notation

Consider a probability space (Ω,F ,P) on which a random vector X = (X1, . . . , Xn) encodes

the binary outcome of the n basic events of the fault tree, cf. Section 2.3. A system failure is

indicated by a Boolean map Φ : {0, 1}n → {0, 1} representing the PDAG and its gate logic.

The quantity of interest is

P := Pr
{
Φ(X) = 1

}
= EP

[
Φ(X)

]
. (17.1)

Each basic event i occurs with probability pi = P(Xi = 1), typically with1 pi � 1 for rare

failures.

17.2.2 Biasing Distribution

The central idea of IS is to replace P by an alternative measure Q under which the failure

event occurs more frequently. In the simplest – yet already effective – per-component tilting

we keep the independence structure but inflate every basic-event probability to a sampling

probability qi ∈ (0, 1). The biased draw X? ∼ Q is therefore characterized by

Q
(
X?

i = 1
)
= qi with qi = clip

(
pi c, ε, 1− ε

)
, (17.2)

where c > 1 is the user-supplied bias factor and ε� 1 prevents degenerate weights.

1For common-cause events a single random variable governs multiple indices. The forthcoming derivation
is agnostic to that subtlety.
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17.2.3 Likelihood ratio and unbiasedness

Let f and g denote the probability mass functions of X under P and Q, respectively. The

Radon–Nikodým likelihood ratio

L(X?) :=
f(X?)

g(X?)
=

n∏
i=1

p
X?

i
i (1− pi)1−X?

i

q
X?

i
i (1− qi)1−X?

i

=
n∏

i=1

`i(X
?
i ) (17.3)

serves as a corrective weight. Here `i(1) = pi/qi and `i(0) = (1−pi)/(1−qi). The IS estimator

for (17.1) based on N iid biased samples is

P̂IS :=
1

N

N∑
k=1

L(k) Φ
(
X?,(k)

)
. (17.4)

Unbiasedness follows immediately from EQ[LY ] = EP[Y ] for any integrable Y .

17.3 Variance Analysis

17.3.1 Classical variance expression

Denote by σ2
MC = P (1− P ) the variance of the plain MC estimator. IS modifies the variance

to

σ2
IS =

1

N

(
EQ[L

2Φ]− P 2
)
. (17.5)

Because L ≥ 0 and EQ[L] = 1, one always has σ2
IS ≤ σ2

MC if the failure region is sampled more

frequently under Q. In the ideal – rarely attainable – case where Q equals the conditional

distribution P( · | Φ = 1) the variance collapses to zero.
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17.3.2 Per-component tilting efficiency

For the product form (17.2) the variance reduction factor can be bounded in closed form. Let

c ≥ 1 be chosen uniformly across all basic events. Then

σ2
IS

σ2
MC
≤ exp

(
−κ log c

)
, (17.6)

where κ ∈ (0, 1] depends on the fraction of rare basic events.

17.4 Algorithmic Realization

Although Chapter 7 focuses on implementation, a concise algorithmic description is indis-

pensable for analyzing convergence.

Step 1 Bias selection. Choose bias factor c > 1 and compute qi via (17.2). Store per-bit

likelihood ratios `i(1) and `i(0) for subsequent weight updates.

Step 2 Biased sampling. For each trial k draw X?,(k) ∼ Q independently.

Step 3 Graph evaluation. Propagate the biased basic-event states through the PDAG gates

to obtain the system outcome Y (k) = Φ
(
X?,(k)

)
∈ {0, 1}.

Step 4 Likelihood-ratio accumulation. Compute the cumulative weight L(k) according to

(17.3). Because L factorizes over the basic events, the multiplication may be performed

incrementally along the data flow.

Step 5 Weighted tallies. Maintain two running sums S1 =
∑

k L
(k)Y (k) and S0 =

∑
k L

(k).

After N trials the point estimate and its standard error follow from

P̂IS =
S1

S0

, (17.7)

V̂ar
[
P̂IS
]
=

1

N S2
0

(∑
k

L2,(k)Y (k) − S2
1/S0

)
. (17.8)

202



Step 6 Stopping criterion. The convergence controller of Section 14 is applied to the weighted

confidence interval.
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Chapter 18

Knowledge Compilation for Monte

Carlo Operations

Monte–Carlo evaluation relies on compiling the system model into intermediate data structures

amenable to bit-parallel traversal. This chapter presents additional algorithmic and data-

structure refinements to the PDAG that underpins McScram’s solver and shows how these

advances enable specialized kernels for composite gates.

18.1 Hardware–Native Voting without AND/OR Ex-

pansion

Threshold (“voting”) gates occur pervasively in fault and reliability models. A naive decom-

position into pairwise and/or operations inflates the graph size combinatorially, impeding

both memory usage and kernel launch efficiency. In this chapter, we develop a hardware-

native alternative rooted in population counting and bit-parallelism. We prove the estimator

obtained by the direct algorithm is identical to that of the expanded Boolean formula, quan-

tify its computational complexity, and examine device-specific performance characteristics.

Extensions to other population-based gates, such as at-most, cardinality, and exact voting
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are treated as corollaries.

18.1.1 Fundamental Voting Predicates

Let I = {X1, . . . , Xn} denote n Bernoulli inputs and write

S(ω) =
n∑

i=1

Xi(ω)

for the population count under an assignment ω ∈ {0, 1}n. Four Boolean predicates will be of

interest:

1. At-Least (Threshold).

ATLEAST(k/n) : Y = [S ≥ k ].

2. At-Most.

ATMOST(k/n) : Y = [S ≤ k ].

3. Exact.

EXACT(k/n) : Y = [S = k ].

4. Cardinality. Given 0 ≤ ` ≤ h ≤ n,

CARD(`, h/n) : Y = [ ` ≤ S ≤ h ].

The predicates satisfy

ATMOST(k/n) = ¬ATLEAST
(
(k + 1)/n

)
, (18.1)

ATLEAST(k/n) = ¬ATMOST
(
(k − 1)/n

)
, (18.2)

CARD(`, h/n) = ATLEAST(`/n) ∧ ATMOST(h/n). (18.3)
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We adopt the symbols of Chapter 7. In particular, a single Monte–Carlo iteration generates

B batches, each batch contains P bit-packs, and every bit-pack stores ω = 8 sizeof(bitpack_t)

Bernoulli trials. Hence an iteration processes N = BPω trials per node.

Let I = {X1, . . . , Xn} be the binary inputs of a voting gate and fix an integer k ∈

{0, . . . , n}. The gate output obeys the Boolean predicate (cf. Eq. (2.3))

Y = [
n∑

i=1

Xi ≥ k ].

We write VOT(k/n) for the connective and reserve the symbols A and G for the counts of

voting and standard gates, respectively, as in Table 7.1.

18.1.2 Logical Equivalence under Bit-Packed Sampling

Monte–Carlo evaluation ultimately concerns the indicator random variable Y (ω) under a

random assignment ω ∈ {0, 1}n. Two alternative computational paths exist:

(E1) Expansion. Rewrite Y into the disjunctive normal form of Eq. (2.4); evaluate the

resulting tree of and/or nodes.

(E2) Threshold test. Count s(ω) =
∑

iXi(ω) and return [s(ω) ≥ k] directly.

Because both (E1) and (E2) are algebraically identical for every assignment ω, the Bernoulli

random variables they produce are equal in distribution: YE1 ≡ YE2. Consequently all

unbiased estimators derived from repeated sampling are identical in expectation and variance.

Section 18.1.3 formalizes these statements.

206



18.1.3 Unbiasedness and Variance Preservation

Let p̂exp and p̂thr denote the estimators of p = Pr(Y = 1) obtained after T iterations via

routes (E1) and (E2), respectively. Both take the canonical form

p̂ =
s

TN
,

where s is the number of one-bits tallied by the kernel of Section 10. As YE1 ≡ YE2, we have

E[sexp] = E[sthr] = TNp and hence E[p̂exp] = E[p̂thr] = p. Thus the direct threshold estimator

inherits the unbiasedness of the expanded approach.

Because the underlying Bernoulli variables coincide, the sample variance per iteration

is Var[Y ] = p(1− p) for either method. Aggregating over TN independent trials gives the

common standard error quoted in Eq. (14.1). No variance penalty is therefore incurred by

bypassing expansion.

18.1.4 Bit-Parallel Cardinality Algorithm

We now articulate the algorithmic core executed by the specialized kernel VOT_Kernel.

The pseudocode mirrors the exposition of Section 7.3.5 but tailors the intra-group logic to a

population-count primitive.

18.1.5 Per-Lane Counting Model

Let (a, b, p, λ) index a single lane as defined in Section 7.3.5: gate a ∈ {1, . . . , A}, batch b,

bit-pack p, and bit position λ ∈ {0, . . . , ω−1}. Each lane stores an 8-bit counter c ∈ {0, . . . , n}

initialized to zero. For every input buffer addressed by the gate the lane accumulates

c ← c+ [bitλ(Xi) = 1] + [bitλ(¬Xj) = 1],
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where positive and negated inputs are treated per Eq. (27) of Section 7.3.5. After the loop

the lane outputs

yλ =



[ c ≥ k ], at-least,

[ c ≤ k ], at-most,

[ c = k ], exact,

[ ` ≤ c ≤ h ], cardinality.

A work-group reduction (bitwise OR) assembles the final ω-bit word.

18.1.6 Complexity Analysis

18.1.6.1 Arithmetic intensity.

Each lane performs n increments and one comparison, giving O(n) integer operations per 64

trials. Comparing to the expanded tree: the latter executes Θ(n) operations per subset and

therefore Θ
((

n
k

))
overall in the worst case. The direct kernel is thus exponentially faster in n.

18.1.6.2 Memory traffic.

Input buffers are streamed once, achieving unit-stride accesses identical to the standard gate

kernel. No additional buffers are materialized, avoiding the memory blow-up described in

Section 7.2.

18.1.6.3 Register pressure.

The counter width is dlog2(n + 1)e bits. For practical fan-ins (n ≤ 255) an 8-bit counter

suffices, preserving high occupancy on GPUs.
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18.1.6.4 Graph-size savings.

Let one VOT(k/n) gate be replaced by its DNF of Eq. (2.4). The expansion introduces

M(n, k) =
n∑

j=k

(
n

j

)

conjunction clauses plus M(n, k) − 1 internal or nodes when lowered onto a binary tree.

Each clause itself maps to one j-input and node. The total additional gate count therefore

grows as

Gexp(n, k) =
n∑

j=k

(
n

j

) (
1 + (j − 1)

)
≈ Θ

(
M(n, k)n

)
,

which is maximized at k ≈ dn/2e with the asymptotic behavior Gexp = Θ
(
2n/
√
n
)
by Stirling’s

formula. The direct threshold kernel replaces this entire sub-tree with a single node—yielding

an exponential reduction in graph size, memory footprint, and kernel launch overhead. For

instance, a 3-of-5 gate (cf. Listing 2.4.1.3.1) collapses from Gexp =
(
5
3

)
+
(
5
4

)
+
(
5
5

)
= 26 logic

gates to one, a 26× reduction. At n = 15 and k = 8 the saving increases to (215 − 1)/2 ≈

16 383:1.

18.1.7 Graph-Size Savings: General Case

Replacing a single CARD(`, h/n) gate by its DNF introduces

Mcard(n, `, h) =
h∑

j=`

(
n

j

)

conjunction clauses and therefore

Gexp(n, `, h) =
h∑

j=`

(
n

j

)(
1 + (j − 1)

)
= Θ

(
Mcard n

)
.
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For ` ≈ h ≈ n/2 this remains Θ(2n/
√
n) by Stirling’s formula. The direct bit-parallel kernel

collapses the entire sub-tree into one node, preserving the exponential advantage shown in

Section 18.1.6.

18.2 Algorithmic and Data-Structure Refinements

While benchmarking the performance impact of using AND/OR vs native VOT gates, we

discovered additional bottlencks in the codebase. Recent profiling of the solver revealed

two dominant hotspots in the knowledge–compilation pipeline: the linear–time associative

container ext::linear_map and the deeply recursive normalization routine for k-of-n (“at-

least”) gates. Both proved amenable to principled, complexity-driven refactoring. This

section describes the resulting data–structure and algorithmic improvements, establishes

their asymptotic properties, and summarizes the empirical speed-ups obtained on the full

benchmark suite.

18.2.1 Indexed Linear Map

The container linear_map stores key–value pairs contiguously so as to retain spatial locality,

yet historically performed all searches by a linear scan. Let N be the number of stored

elements. The original design therefore incurred Θ(N) time for every find, insert, and

erase operation, while equality comparison required Θ(N2) pairwise checks.

We introduce an auxiliary hash index H : K → {0, . . . , N − 1} maintained lazily. All

look-ups first consult H (expected Θ(1)). When a stale mapping is detected—possible after

key mutation in place—the index is rebuilt in one linear pass, amortizing future operations

to expected Θ(1). Crucially, the public API, iterator invalidation rules, and memory layout

remain unchanged, preserving drop-in compatibility.
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18.2.2 Iterative Normalization of At-Least Gates

The pre-existing routine NormalizeAtleastGate was mutually recursive on the gate’s

two largest arguments. For a fan-in of m literals the call stack grew to depth O(m), and

each level executed its own max_element scan, yielding O(m2) work overall. Repeated

re-allocation of the child–argument arrays further amplified the cost.

The new implementation replaces recursion with an explicit stack and reserves memory

for child gates a priori via a helper ReserveArgs method. The algorithm now traverses

each literal exactly once, achieving Θ(m) time and Θ(1) call-depth.

18.2.3 Complexity Summary

Component Before After

linear_map look-ups Θ(N) Θ(1) (amort.)

linear_map equality Θ(N2) Θ(N)

Normalize k-of-n gate Θ(m2) Θ(m)

Call-stack depth O(m) O(1)

18.2.4 Empirical Evaluation - Micobenchmark

On a single-threaded Intel i7-10700 (3.70 GHz, clocks locked) the normalization of a rep-

resentative ATLEAST(6/32) gate—producing 197 315 AND and 312 416 OR nodes—now

completes in 5.8 s versus 1 080 s before the refactor, a 186× improvement that aligns with the

theoretical reduction from quadratic to linear work. Across the full knowledge-compilation

benchmark the wall-clock time fell from 1 080s to 5.8s (–99.5%).
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18.3 Compilation Pipeline for Monte Carlo–Aware Ker-

nels

Let G0 denote the input graph and let G` be the graph after compilation level ` with 0 ≤ ` ≤ 8.

Each level applies a well-defined transformation T` so that

G` = T`
(
G`−1

)
, G0 = PDAG(M),

whereM is the original unified PRA model. Table 18.1 summarizes the objectives of every

stage and contrasts the classical five-phase recipe of Rakhimov with the streamlined variant

adopted in this work.

18.3.1 Comparison with the Five–Phase Paradigm

Rakhimov’s framework executes the five phases sequentially, repeating costly coalescing passes

between them. In contrast, our pipeline incorporates two key departures:

(1) Early specialization. Rather than fully expanding k-of-n gates into AND/OR trees at

Level 6, we map them to the hardware-native voting kernel of Section 18.1. The trans-

formation preserves logical semantics but avoids the combinatorial blow-up quantified

in Section 18.1.7.

(2) Iterative fixed-points. Many transformations (e.g., gate coalescing) are applied until

convergence inside a single level, eliminating the inter–phase duplication present in the

original schedule. Formally, if U is an idempotent contraction operator, we compute

G∗ = lim_i→∞U i(G) within one level rather than scattering U across multiple

passes.
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Table 18.1: Compilation levels for PDAGs; k-of-n gates are written ATLEAST(k/n).
Columns “R” and “O” mark whether a task is present in Rakhimov’s original pipeline
or in Our variant.

Level ` Stage name Principal transformation T` R O

0 Baseline Skip expansion of ATLEAST /
XOR as requested

— X

1 Null / Negation Eliminate null gates; absorb sin-
gle negations

X X

2 Definition Coalescing Merge multiple definitions, de-
tect modules, coalesce non-
shared gates, merge common
args

X X

3 Boolean Optimization Distributivity detection and
Shannon expansion; decompose
common nodes

X X

4 Phase I (Rakhimov) Remove nulls, normalize nega-
tions if non-coherent

X —

5 Phase II (Rakhimov) Re-run coalescing and module
detection

X —

6 Phase III Full normalization (Part A):
expand k-of-n, XOR; re-run
Phase II

X X(iterative)

7 Phase IV Push negations downward; re-
run Phase II

X X(on-demand)

8 Phase V Final coalescing pass; fixed-point
NNF is reached

X X

18.3.2 Complexity Implications

Let |G| be the number of gates and m the maximal gate fan-in. Under Rakhimov’s regimen

the worst-case complexity of reaching negation normal form (NNF) is

O
(
|G|m2

)
,
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due to repeated quadratic scans over argument lists. The optimized pipeline removes duplicate

scans and adopts the linear algorithms of Section 18.2, yielding

O
(
|G|m

)
in theory and the two-order-of-magnitude wall-clock reduction reported in Section 18.2.4.

18.3.3 Monte–Carlo Sampling After Compilation

After Level 8 the compiled graph G8 satisfies three properties vital for efficient sampling:

(a) Acyclic layering ensures breadth-first evaluation across batches.

(b) Negation normal form confines complements to literals, enabling bitwise polarity control

without extra nodes.

(c) Hardware-native composites such as voting kernels reduce per-sample arithmetic inten-

sity from Θ
((

m
dm/2e

))
to Θ(m), cf. Eq. (18.3).

Consequently the cost of one Monte–Carlo iteration becomes

Citer = |G8| cstd + |A| cvot,

where cstd and cvot are the average per-gate latencies for standard and voting gates, and |A|

is the number of specialized composites. Because cvot ≈ cstd (Section 18.1.6), the leading

factor is the graph size rather than gate heterogeneity, underscoring the importance of the

exponential savings demonstrated earlier.
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18.3.4 Micro-Benchmark: Structural Compression Achieved by

Compilation

To quantify how each compilation level reduces graph size, we measure the compression factor

γ(`) =
|G0|
|G`|

,

where |G| counts all gates in the PDAG.1 The statistics in Table 18.2 summarize 2,987 model

builds that survived the data-quality filters described in Section 18.2.4.

Figure 18.1: Structural compression factor γ (ratio of original to compiled gate count) for
each compilation flag C`. Grey circles denote individual models; the orange line traces the
median and the shaded band covers the 5 – 95% quantile range.

18.3.4.0.1 Key findings.

1A value γ > 1 indicates net compression; γ < 1 means expansion.
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Table 18.2: Compression factor γ by compilation level C`. Medians are reported together
with the 5th and 95th percentiles. Levels C5–C7 are omitted because no models were compiled
at those settings in the current benchmark.

Compilation flag Median γ P5 P95

C0 0.996 0.918 1.096
C1 1.002 0.918 1.100
C2 1.344 0.909 2.204
C3 1.243 0.789 1.844
C4 1.243 0.789 1.844
C8 1.220 0.702 1.820

• Levels C2–C4 already yield a median γ > 1, confirming that early coalescing and

Boolean simplification shrink most models without full normalization.

• Level C8 maintains the compression despite additional passes to reach NNF, indicating

that late-phase expansions (e.g., DeMorgan pushes) are offset by more aggressive gate

sharing.

18.3.4.1 Compression vs. Average Fan-in
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Figure 18.2: Relationship between average gate fan-in f in the compiled PDAG and structural compression factor γ. Points are
colored by compilation flag; dashed lines show ordinary least–squares fits on log–log axes with slopes indicated in the legend.
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Table 18.3: Global regression of compression factor on average fan-in.

Dataset Slope a Intercept b R2 n

All models 0.370 −0.128 0.17 2064

Pooling all compilation levels, the relationship between compression and average gate

fan-in f is well described by the log–log regression

log10 γ = 0.370 log10 f − 0.128, R2 = 0.17 (n = 2064).

Equivalently γ ≈ 0.75 f 0.37, indicating sub-linear returns: doubling average fan-in improves

compression by only 29%.

The modest R2 reflects structural heterogeneity among models: in series–parallel fragments

compression saturates regardless of f , whereas highly redundant safety logic with large voting

constructs exhibits super-linear sharing potential. A finer taxonomy of these architectures

remains future work.

18.4 Microbenchmark: Throughput by Gate Type
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Figure 18.3: (Top) Throughput in bit/second on various backends for different gate types.
(Bottom) % Relative speedup/slowdown as compared to the AND gate.
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Chapter 19

Aralia Benchmarks – Revisited

19.1 Accuracy Benchmark
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Figure 19.1: Absolute error (Log-probability) for Data-Parallel Monte Carlo (DPMC) vs Min Cut Upper Bound (MCUB) and
Rare-Event Approximation (REA)
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19.2 Convergence Runs

In this section we revisit the Monte–Carlo convergence experiments on the Aralia fault–tree

data set (Section 6.2.1). The original study targeted a relative margin of error of 0.1%—that

is, ε = 10−3 p̂—at a 99% confidence level with a wall–clock time limit of 60 s per model.

Those criteria are maintained here to allow a like–for–like comparison while isolating the

impact of the solver refinements introduced in this second iteration.

Figures 19.2 and 19.3 collate the updated convergence traces for all 43 fault trees. Each

subplot aggregates every timestamped run belonging one of the Aralia models.

• the sample mean estimate (solid colored line),

• the empirical 90% and 99% confidence bands (shaded regions), and

• , where available, the reference “oracle” probability (black dashed).

The remainder of the 41 convergence runs can be located in the Appendix.
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Figure 19.2
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Figure 19.3
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19.3 Throughput Benchmark
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Figure 19.4: Throughput as function of graph size on multicore CPU, embedded GPU, and
discrete GPU

Figure 19.5: Time to convergence for different convergence target, multicore CPU, embedded
GPU, and discrete GPU
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Part V

Inverse Problems
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Chapter 20

Towards Parameter Fitting

PRAs invariably involve uncertainty. When explicitly modeled, these uncertainties can be

updated or inferred from evidence, engineering judgments, or reliability targets. We refer to

such systematic updating of probability or frequency distributions across the PRA model as

form of parametric fitting.

Recall from (Section 4.1) that we represent a PRA model as a PDAG. Let θ be the

collection of parameters governing all relevant probabilities/frequencies in this PDAG. For

an end-state Sj, the model-based prediction under θ is

PM
(
Sj | θ

)
.

If one also has observed or target frequencies
{
pobs
j

}
, parametric fitting seeks to reconcile

this information with the model’s predictions by updating θ. In a Bayesian setting, one may

specify a prior distribution over θ and update this prior to a posterior distribution via the

likelihood of observed end-state frequencies or other system-level evidence. Alternatively,

one may adopt an optimization-based approach: define a loss or cost function that measures

the discrepancy between {pobs
j } and {PM(Sj | θ)}, then minimize this loss with respect to θ.

Both perspectives aim to systematically adjust the PRA model’s probabilistic parameters so

that end-state frequencies (or other risk metrics) remain consistent with available data or
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requirements.

In the next section, we show how parametric fitting over the PDAG can be setup as a

constrained optimization problem.

20.1 Parameter Fitting as Constrained Optimization

Each node Xi in the PDAG has an associated parameter θi, gathered into a vector

θ = (θ1, θ2, . . . , θn).

For a set of end-states {Sj}mj=1, the model’s predicted probability under θ is

ppred
j

(
θ
)

= PM
(
Sj | θ

)
.

Suppose observed or target frequencies
{
pobs
j

}
are given. A discrepancy measure

d
(
pobs
j , ppred

j (θ)
)

compares the model’s predictions to these values. One can also add a regularization term Ψ(θ)

to encode additional constraints such as engineering limits or prior information. Let Ω denote

the feasible set for θ, enforcing domain-specific requirements (e.g., probability normalization).

Parameter fitting then becomes the following constrained optimization problem:

min
θ∈Ω

m∑
j=1

d
(
pobs
j , ppred

j (θ)
)

+ Ψ(θ).

A solution θ∗ in Ω is sought that minimizes overall discrepancy while respecting any additional

constraints. Gradient-based methods (when d is differentiable) or other solvers can be

employed.
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20.2 Case Study: EBR-II Liquid Metal Fire Scenario

We apply the proposed optimization method to an event tree from the Experimental Breeder

Reactor-II (EBR-II) Level I PRA [26]. The potential initiating event is a leak in the piping

loop of the reactor’s shutdown cooler, which uses sodium-potassium (NaK) coolant. Air

intrusion near NaK can cause fire hazards. The event tree, shown in Figure 20.1 enumerates

whether (i) the liquid-metal fire is detected in time (LMFD), (ii) a reactor scram is successfully

initiated (RFIR), (iii) the fire is classified as severe or limited (LLRF), (iv) a plant-level

fire suppression system fails or succeeds (SSSD), and (v) critical secondary systems remain

operational (SYSO). These conditional events interact to form multiple end-states, labeled

SDFR-0 through SDFR-8. Some end-states represent minimal impact (e.g., immediate fire

detection and promptly executed scram), whereas others lead to more severe conditions (e.g.,

no detection and system failures yielding potential core damage).

20.2.1 Event Tree Structure and Problem Setup

Following the notation from Section 2.2, each end-state Sj arises from a particular path of

success/failure outcomes across the conditional events. Let {X1, . . . , Xn} be the events (e.g.,

LMFD,RFIR, . . .), and let yji ∈ {0, 1,NaN} indicate whether Xi fails, succeeds, or is not

applicable for path Sj. The probability of end-state Sj is

P (Sj) =
n∏

i=1

P
(
yji
)
, (20.1)

where

P
(
yji
)

=


P
[
Xi = 1

]
, if yji = 1,

1− P
[
Xi = 1

]
, if yji = 0,

1, if yji = NaN.

(20.2)
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Figure 20.1: EBR-II Shutdown Cooler NaK Fire in Containment

Thus, one may represent each end-state Sj by multiplying the associated conditional event

probabilities along its branch of the tree.

In this case study, each P
[
Xi = 1

]
is assigned a (truncated) log-normal parameterization,

reflecting the fact that event probabilities can span several orders of magnitude. Let µi, σi

denote the log-space mean and standard deviation of event Xi. Under truncation rules (e.g.,

restricting µi ∈ [10−10, 1] and σi ∈ [10−10, 104]), the resulting probability stays in (0, 1) and

avoids extreme instabilities. These are plotted in Figure 20.2 as normalized kernel density

estimates[terrell_variable_1992].
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20.2.2 Loss Function Definition

Given a set of target or observed end-state frequencies {pobs
j }mj=1, the task is to infer {µi, σi}ni=1

so that the predicted frequencies

ppred
j ≡ P

(
Sj | {µi, σi}

)
match pobs

j as closely as possible. Denoting θ = (µ1, σ1, . . . , µn, σn) for all events, the optimal

parameters solve a constrained minimization:

min
θ∈Ω

L
(
θ; {pobs

j }
)

subject to truncation and system constraints, (20.3)

where Ω encodes bounds (e.g., µi, σi ≥ 10−10), and L is a loss function. Here, one defines L

via a Normalized Relative Logarithmic Error (NRLE), which balances discrepancies in both

the predicted end-state frequencies and the tails of the distributions. A simplified version of

NRLE is:

NRLE =
1

m

m∑
j=1

1

2

(
MAE

(
log[pobs

j + ε], log[ppred
j + ε]

)
+ MAE

(
σobs
j , σpred

j

))
, (20.4)

where MAE denotes mean absolute error, and ε is a small positive constant to avoid log( 0 ).

The terms σobs
j and σpred

j refer to log-space standard deviations for the respective distributions

of (or mapped from) end-states or functional events. By design, this objective penalizes

deviations of both central tendencies and spread. A gradient-based algorithm (e.g., Adam

[zhang_improved_2018]) then iteratively refines {µi, σi}, using automatic differentiation

with respect to L.
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20.2.3 Results & Discussion

The parameter estimation recovered target distributions and corresponding end-state fre-

quencies with near-accurate fidelity, indicating that the method is capable of approximating

underlying probabilities from limited inputs. The predicted end-state frequency estimates are

plotted in Figure 20.5.

Specifically, end-state frequencies estimated under the constrained optimization process

diverged from reported references by small margins: on average, the mean values were

recovered with an error of about (1.08± 0.96)%, the 5th percentile with (4.39± 7.09)%, and

the 95th percentile with (3.82± 5.91)%. Such deviations suggest that the overall approach

captures the central tendencies of event probabilities reasonably well, while still exhibiting

moderate scatter in both lower and upper distribution tails. Recurrence of larger discrepancies

in selected events (e.g., certain fire detection or suppression paths) emphasizes the known

difficulty of accurately modeling rare failure or success probabilities—particularly when the

choice of distribution (e.g., log-normal) imposes strong structural assumptions on the shapes

of these probability curves.

Despite these promising quantitative metrics, two issues warrant discussion. First, although

end-state frequencies are reproduced within small mean errors, there is a real possibility

of overfitting to the specified targets. The optimization-driven procedure can finely tune

parameters to minimize a chosen loss function; however, doing so may lead to calibrated

event probabilities that reflect artifacts of the objective rather than a physically robust

representation. This risk is heightened when dealing with low-probability events (e.g., a rare

liquid metal fire condition combined with other system failures)—situations that often exhibit

limited empirical data.

Second, the truncation and bounds on the log-normal parameterization, while necessary

for numerical stability, can restrict the feasible solution space in unintended ways. Large

or extremely small event probabilities, particularly in tail regions, must fit within these
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truncated distributions. If the true system behavior lies outside the assumed bounds, the

resulting estimates may systematically under- or overestimate important tail events. This

possibility is underscored by the modest underestimation observed at the 95th percentile for

certain functional events in the demonstration.

234



Figure 20.2: Initial vs Target Functional Event Probability Distributions

Figure 20.3: Initial vs Target End-State Frequency Distributions

235



Table 20.1: Estimated vs Target Functional Event Probabilities Summarized

Event 5th Percentile Mean 95th Percentile

Estimated Target Error1 Estimated Target Error1 Estimated Target Error1

SDFR 3.29× 10−3 3.31× 10−3 −2.31× 10−5 4.25× 10−3 4.31× 10−3 −5.98× 10−5 5.38× 10−3 5.48× 10−3 −1.08× 10−4

LMFD 4.40× 10−8 4.30× 10−8 9.86× 10−10 1.01× 10−6 1.00× 10−6 7.14× 10−10 3.71× 10−6 3.71× 10−6 −5.10× 10−9

RFIR 2.50× 10−6 2.40× 10−6 9.29× 10−8 4.14× 10−6 4.01× 10−6 1.30× 10−7 6.33× 10−6 6.16× 10−6 1.72× 10−7

LLRF 4.74× 10−3 4.73× 10−3 1.95× 10−5 9.94× 10−3 1.00× 10−2 −6.37× 10−5 1.78× 10−2 1.80× 10−2 −2.26× 10−4

SSSD | LLRF2 8.73× 10−3 8.36× 10−3 3.69× 10−4 1.02× 10−2 1.01× 10−2 5.38× 10−5 1.16× 10−2 1.20× 10−2 −3.32× 10−4

SSSD | LLRF 4.94× 10−1 4.07× 10−1 8.75× 10−2 4.95× 10−1 5.01× 10−1 −5.49× 10−3 4.97× 10−1 6.08× 10−1 −1.12× 10−1

SYSO | LLRF 8.25× 10−5 8.34× 10−5 −9.55× 10−7 1.37× 10−4 1.36× 10−4 8.32× 10−7 2.08× 10−4 2.04× 10−4 3.86× 10−6

SYSO | LLRF 8.55× 10−2 8.61× 10−2 −6.50× 10−4 9.90× 10−2 1.01× 10−1 −1.12× 10−3 1.15× 10−1 1.16× 10−1 −1.67× 10−3

Figure 20.4: Estimated vs Target Functional Event Probability Distributions

1[Estimated - Target], negative values represent underestimates.
2A | B: event A conditional on the non-occurrence of event B.
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Table 20.2: Estimated vs Target End-State Frequencies Summarized

Event 5th Percentile Mean 95th Percentile

Estimated Target Error3 Estimated Target Error1 Estimated Target Error1

SDFR-04 9.96× 10−1 9.96× 10−1 1.09× 10−4 9.97× 10−1 9.97× 10−1 5.99× 10−5 9.98× 10−1 9.98× 10−1 2.31× 10−5

SDFR-1 3.22× 10−3 3.24× 10−3 −2.27× 10−5 4.17× 10−3 4.23× 10−3 −5.87× 10−5 5.28× 10−3 5.38× 10−3 −1.07× 10−4

SDFR-2 3.13× 10−5 3.08× 10−5 5.82× 10−7 4.23× 10−5 4.27× 10−5 −3.57× 10−7 5.53× 10−5 5.70× 10−5 −1.71× 10−6

SDFR-3 3.16× 10−9 3.16× 10−9 −7.37× 10−12 5.74× 10−9 5.75× 10−9 −1.32× 10−11 9.34× 10−9 9.36× 10−9 −2.40× 10−11

SDFR-4 9.63× 10−6 9.23× 10−6 4.08× 10−7 2.14× 10−5 2.16× 10−5 −1.91× 10−7 3.95× 10−5 4.08× 10−5 −1.34× 10−6

SDFR-5 8.48× 10−6 8.32× 10−6 1.67× 10−7 1.89× 10−5 1.95× 10−5 −5.88× 10−7 3.48× 10−5 3.68× 10−5 −2.05× 10−6

SDFR-6 9.11× 10−7 9.08× 10−7 3.36× 10−9 2.07× 10−6 2.16× 10−6 −9.11× 10−8 3.86× 10−6 4.14× 10−6 −2.87× 10−7

SDFR-7 9.85× 10−9 9.59× 10−9 2.65× 10−10 1.76× 10−8 1.73× 10−8 3.09× 10−10 2.83× 10−8 2.80× 10−8 3.18× 10−10

SDFR-8 1.82× 10−10 1.81× 10−10 1.86× 10−12 4.19× 10−9 4.25× 10−9 −5.51× 10−11 1.57× 10−8 1.59× 10−8 −2.54× 10−10

Figure 20.5: Estimated vs Target End-State Frequency Distributions

3[Estimated - Target], negative values represent underestimates.
4The likelihood of no SDFR. Computed by subtracting all end-state frequencies from the total probability.
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Chapter 21

Conclusion and Future Work

The preceding chapters have advanced a hardware–accelerated Monte–Carlo framework that

re-imagines quantitative risk assessment from first principles: from the unification of event

trees and fault trees into a single probabilistic directed acyclic graph (PDAG), through a bit–

parallel execution model that saturates commodity GPUs, to a suite of statistical diagnostics

that certify estimator quality in real time. The purpose of this chapter is threefold:

1. Recapitulate the dissertation’s principal contributions and empirical findings;

2. Assess the methodological limitations that remain; and

3. Chart a research agenda that extends the present work toward an end-to–end, industry–

grade risk-analytics platform.

21.1 Summary of Contributions

1. Holistic Modeling via Unified PDAGs. We demonstrated that the full spectrum of

PRA artifacts—hundreds of event trees and thousands of fault trees—can be embedded in a

single computation graph (Chapter 4.1). The formulation preserves logical semantics while

eliminating bookkeeping boundaries between top‐down and forward‐chaining analyses.
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2. Hardware-Native Logic Gates. Threshold, cardinality, and related voting constructs

were formalized as first-class citizens whose bit-packed kernels provably replicate AND/OR

expansions (Chapter 18.1). The result is an exponential reduction in graph size—up to

O(2n/
√
n) for worst–case fan-ins—without sacrificing estimator unbiasedness or variance.

3. Knowledge Compilation Re-examined. An eight-stage transformation pipeline was

designed for Monte-Carlo rather than exact inference (Chapter 18.3). By relaxing certain

normal‐form constraints and introducing linear-time data structures, compile times fell from

1 080 s to 5.8 s (186×) on a representative ATLEAST(6/32) gate.

4. Bit-Parallel Execution Model. Layers of the PDAG are evaluated in lock-step

by SYCL kernels that process 64 Bernoulli trials per machine word (Parts III and IV).

Benchmarks on the 43-model Aralia dataset confirm fully saturated memory bandwidth and

arithmetic pipelines, with sub-percent relative error attained in < 5 s for graphs containing

∼103 unique events—even on entry-level consumer GPUs.

5. Rigorous Convergence Diagnostics. A composite stopping rule (Chapter 14) fuses

frequentist, Bayesian, and information-theoretic criteria, ensuring that every estimate meets

a user-specified margin of error while avoiding wasteful oversampling.

6. Domain-Specific Extensions. Common-cause failure modeling, first-order importance

measures, and a practical importance-sampling scheme for rare events were integrated without

altering kernel code paths (Part IV). Each extension carries formal proofs of unbiasedness

and variance preservation.

7. Open-Source Reference Implementation. The entire framework is released under a

permissive license, thereby lowering the barrier to third-party validation, audit, and reuse.
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21.2 Empirical Findings

• Graph Compression. Knowledge-compilation levels C2–C4 already yield median

gate-count reductions of 30 %; final compiled graphs shrink by a median factor of 1.3×

while preserving logical fidelity.

• Throughput and Scaling. On an NVIDIA RTX 3060 Laptop GPU the solver sustains

≈5.8×109 Boolean operations per second, a 200–400× improvement over single-threaded

CPU baselines.

• Estimator Quality. Across all Aralia models the empirical coverage of 99 % confidence

intervals exceeds 98.6 %, confirming that the composite stopping rule is neither overly

conservative nor prone to premature termination.

• Rare-Event Performance. Importance sampling lowers variance by up to two orders

of magnitude for top-event probabilities below 10−6, but probabilities in the 10−8 regime

still require prohibitively many samples on commodity hardware.

21.3 Limitations

Despite substantial progress, several constraints delimit the present framework’s applicability:

Ultra-Rare Events For probabilities < 10−8 the sample size needed to achieve sub-percent

precision remains computationally expensive even with importance sampling.

Hardware Dependence Peak performance assumes wide SIMD lanes and high memory

bandwidth; CPU-only deployments incur 1–2 orders of magnitude slower runtimes.

Static Graphs The methodology targets static Boolean logic. Time-dependent degrading

components, repair policies, or scenario trees with feedback loops are out of scope.
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Correlation Modeling While common-cause failures are supported, broader classes of

statistical dependence (e.g. epistemic‐aleatory mixtures, copulas) have not yet been

integrated into the bit-packed sampler.

Verification and Validation Industry-scale PRA models—such as the Generic Pressur-

ized Water Reactor benchmark—have yet to undergo full-fidelity replication within

mcSCRAM.

21.4 Future Work

The limitations above point to a fertile research agenda:

21.4.1 Variance-Reduction Beyond Importance Sampling

Importance sampling remains our primary defense against estimator blow-up in the tail,

yet it is notoriously brittle: likelihood–ratio weights can explode, self-normalized estimators

suffer when weight variance is high, and GPU reduction of double-precision weights stresses

memory bandwidth. A richer palette of variance-reduction strategies promises more reliable

convergence across the entire probability spectrum:

1. Stratified and Latin–Hypercube Sampling (LHS). By forcing each stratum of

the basic-event probability simplex to be represented exactly once per iteration, LHS

lowers variance for smoothly varying response surfaces by up to an order of magnitude

and reuses the existing bit-packing kernels with only a deterministic permutation of

PRNG counters.

2. Antithetic Variates. For coherent fault trees the mapping (X 7→ ¬X) yields negatively

correlated pairs. Launching antithetic trajectories doubles work per thread but can

halve variance at negligible implementation cost.
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3. Control Variates and Rao–Blackwellization. Gate-level surrogate models—e.g.

logistic or polynomial fits updated on-the-fly—offer closed-form expectations that, when

subtracted, act as low-cost control variates. The correction occurs during the tally

reduction and does not perturb the sampling kernel.

4. Multi-Level / Multi-Fidelity Monte Carlo. Evaluate a hierarchy of approxima-

tions—coarse cut-set truncations, reduced bit-width kernels, or early-exit gate evalua-

tions—and combine them with optimally chosen coefficients to achieve the canonical

O(ε−2) complexity with markedly smaller constants.

5. Subset Simulation and Splitting. Particularly effective for top events with proba-

bilities below 10−9, these algorithms recurse on nested conditional events rather than

rely on exponentially small likelihood ratios, thereby avoiding the weight-degeneracy

problem of extreme importance sampling.

All five techniques map cleanly onto modern accelerators: strata and antithetic pairs

correspond to extra kernel dimensions; control-variate adjustment is a post-kernel reduction;

multi-level sampling reuses the compiled graph with altered fan-in; and subset simulation

requires only a lightweight, GPU-resident event queue. Integrating them would extend

mcSCRAM’s reach to risk scenarios where the current importance-sampling prototype stalls.

21.4.2 Discrete-Event Simulation Engine

The static Boolean abstraction is well suited to snapshot risk metrics, yet many industries

require explicit reasoning about when failures occur, how long repairs take, and how operator

interventions alter the hazard landscape. A discrete–event simulation (DES) back-end would

elevate mcSCRAM from a purely probabilistic calculator to a full life-cycle risk engine.

Event Calendar. A lock-free, GPU–resident event calendar—realized as a ring buffer

or bucketed heap—would schedule state transitions while maintaining sub-microsecond
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synchronization overhead.

Hybrid Evaluation. Boolean layers continue to leverage the bit-parallel kernels; the DES

layer merely dictates which subset of nodes fire at each time stamp. This preserves the

compiled-graph investment while adding a temporal dimension.

Variable-Time Stepping. Techniques such as subset simulation dovetail naturally with

DES: busy early phases are simulated densely, whereas long quiescent intervals can be

collapsed into single jumps, reducing the event calendar’s size without biasing results.

Validation Path. An incremental roadmap begins with mission-time availability mod-

els—exponential failure and repair—where analytical benchmarks exist, then extends to

phased-mission and standby redundancy logic.

Scalability Considerations. Typical DES workloads involve 106–107 events, orders of

magnitude fewer than Monte-Carlo samples, making them ideal for CPU–GPU pipelining:

the CPU advances the calendar while the GPU processes batched Boolean evaluations in the

background.

A DES extension therefore promises accurate time-dependent risk metrics at interactive

latencies, closing the gap between snapshot PRA and real-time condition monitoring.

21.4.3 Correlated Uncertainty Models

Incorporating copula-based or Bayesian network representations of component dependence will

broaden the framework’s realism. A first step is to embed vectorized random-field generators

whose correlation structure aligns with bit-packed memory layouts.
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21.4.4 Gradient-Based Parameter Learning

Chapter 16 hinted at automatic differentiation of Boolean circuits. A full autodiff backend

would unlock gradient descent over leaf probabilities or gate parameters, enabling data-driven

calibration and model fitting (Part V).

21.4.5 Real-Time and Streaming Probabilistic Risk Assessment

By streaming input data and maintaining incremental tallies, the solver could support rolling

updates with statistical guarantees—a capability relevant to plant monitoring and digital

twin applications.

21.4.6 Cross-Industry Validation

Applicability to aerospace, autonomous driving, and chemical processing systems should be

demonstrated on open benchmark suites, thereby establishing mcSCRAM’s generality.

Closing Remarks

This dissertation has shown that a principled blend of probabilistic circuits, high-throughput

hardware, and modern statistical diagnostics redefines the computational frontier of quan-

titative risk assessment. By evaluating entire PRA models as unified computation graphs,

mcSCRAM closes the gap between theoretical rigour and practical turnaround time—bringing

risk-informed decision making within reach of domains where exhaustive symbolic methods

have long since faltered. The roadmap laid out above offers a vision for completing the

transition from point solution to pervasive, real-time risk analytics. The author invites the

community to build upon this foundation and advance the state of the art in stochastic

dependability modeling.
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Appendix A

Revised Aralia Benchmark Plots

In this chapter, we plot the the Monte–Carlo convergence experiments on the Aralia fault–tree

data set (Section 6.2.1). The revised study targeted a relative margin of error of 0.1%, that

is, ε = 10−3 p̂, at a 99% confidence level with a wall–clock time limit of 60 s per model. The

following figures collate the updated convergence traces for all 43 fault trees.

• the sample mean estimate (solid colored line),

• the empirical 90% and 99% confidence bands (shaded regions)

• where available, the reference “oracle/true” probability (black dashed).
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Figure A.1: Aralia Fault Tree 1
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Figure A.2: Aralia Fault Tree 2
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Figure A.3: Aralia Fault Tree 3
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Figure A.4: Aralia Fault Tree 4
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Figure A.5: Aralia Fault Tree 5
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Figure A.6: Aralia Fault Tree 6
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Figure A.7: Aralia Fault Tree 7
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Figure A.8: Aralia Fault Tree 8
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Figure A.9: Aralia Fault Tree 9
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Figure A.10: Aralia Fault Tree 10
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Figure A.11: Aralia Fault Tree 11
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Figure A.12: Aralia Fault Tree 12
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Figure A.13: Aralia Fault Tree 13
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Figure A.17: Aralia Fault Tree 17

276
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Figure A.42: Aralia Fault Tree 42

301
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