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Fission Batteries

• Plug-&-play nuclear reactor

• Should function just like a battery


• Attributes

• Economical

• Standardized

• Installed

• Unattended

• Reliable

source: INL/EXT-21-61275
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The Dual Error Propagation Method
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The Dual Error Propagation Method

• Need for accurately modeling digital I&C reliability.


• Some challenges include:

• Exploding state-spaces

• CCF effects

• Hardware-Software combination failures

Motivation

CCF: Common Cause Failure, I&C: Instrumentation and Control 7



The Dual Error Propagation Method

• DEPM

• is a method for mapping system states onto failure states.

• combines two* Markov chains.

• splits state transitions into control flows and data paths.

• can be used for fault injection, error propagation analysis, etc. 

What is DEPM?

*hence, dual 8



The Dual Error Propagation MethodA Software DEPM Example

The Dual Error Propagation Method

# Example Source Code

1 {DATA_1, DATA_3} = function A();

2 	DATA_2 = function B(DATA_1);

3 	DATA_4 = function C(DATA_2, DATA_3);
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# Example Source Code

1 {DATA_1, DATA_3} = function A();

2 	DATA_2 = function B(DATA_1);

3 	DATA_4 = function C(DATA_2, DATA_3);

The Dual Error Propagation Method - Software Example
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The Dual Error Propagation Method

The Dual Error Propagation Method - Software Example

ID Data Flow (DF) Control Flow (CF)

A
always:

• with P(0.9): DATA 1 = ok & DATA 3 = ok

• with P(0.1): DATA 1 = error & DATA 3 = error

always:

• with P(1.0): GOTO B

B

if DATA 1 = ok, then:

• with P(1.0): DATA 2 = ok

else:

• with P(0.8): DATA 2 = ok

• with P(0.2): DATA 2 = error

always:

• with P(0.3): GOTO A

• with P(0.7): GOTO C

C

if DATA 2 = ok & DATA 3 = ok, then:

• with P(1.0): DATA 4 = ok

else:

• with P(0.8): DATA 4 = error

• with P(0.2): DATA 4 = ok

-

Observer Term Logical Expression

BRANCHING ERROR (CF = B) AND (CF’ = A)

DATA 4 CORRUPT (DATA 4) != (‘OK’) 11



The Dual Error Propagation Method - Integration

Event Sequence Diagram / Event Tree

Fault Tree

Dual Error Propagation Graph
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Case Study
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Case Study• Wildfire

• Four Phases

• Ignition

• Propagation

• Peak

• Mitigation

Case Study - Scenario Description
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Case Study - Scenario Description

• However, 
notification of 
wildfire event may 
be delayed


• Lagged notification 
is modeled as 
Phase Alert Delay
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Fission Battery Response

• Graded Shutdown

• Success Criteria - Target power levels and times

Case Study - Scenario Description
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Graded Shutdown - Target Reactor Power Levels
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Case Study
• Fully automated control


• Actuates 6 Control Drums


• Uses 3 PLCs for redundancy


• Each PLC implements a 
software PID loop - 6 total 
PID Loops

Reactor Control System (RCS)

Case Study - System Description

PLC: Programmable Logic Controller, PID: Proportional Integral Derivate 18



CASE 1: Event Sequence Diagram / Fault 
Tree Approach

Case Study
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CASE 1: RCS Power Down ESD
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CASE 1: RCS Unavailability Fault Tree
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CASE 1: DSP Hardware Failure Rate Estimation

Arrhenius Model
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CASE 1: DSP Temperate Adjusted Failure Rate
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CASE 1: Temperature Dependent Hardware Failure Rates
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CASE 1: Temperature Dependent Hardware Failure Rates
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CASE 1: Temperature Dependent Hardware Failure Rates
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CASE 1: RCS Unavailability Fault Tree
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CASE 1: RCS Power Down End-State Likelihoods
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CASE 2: ESD/FT with DEPM & Recoveries

Case Study
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CASE 2: Reactor Control System Power Down ESD
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CASE 2: RCS Unavailability Fault Tree
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CASE 2: PID Software Failure Rate Estimation
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CASE 2: PID Software Failure Rate Estimation
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CASE 2: PID Software Failure Rate Estimation

• Calculate instruction failure rate by estimating bit error rate and adjust it for 
temperature dependent failure mechanisms.

≈ AFDSP × 1.12 × 10−7 [  error 
 bit  ×  hour ]

λBER = AFDSP × ( 1
210 ) [  error  bit  ] × ( 1

365 × 24 ) [ 1
 hour ]

• Since 1 SRAM bit is implemented using 6 CMOS transistors, estimate transistor 
use per instruction for this CPU to get instruction failure rate
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CASE 2: PID Software Failure Likelihoods

358 Ψ ⟹ P=? [◊≤k φ] : Once event Ψ occurs, the probability that φ is satisfied within k time units



CASE 2: DEPM - Software PID Failure Likelihoods

Figure 4.18: Observed Events, PID Software Failure to Change Power Level on Alert 36
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CASE 2: RCS Power Down End-State Likelihoods



CASE 3: Integrating Dual Error 
Propagation into Dynamic Event Trees

Case Study
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CASE 3: Reactor Control System Power Down ESD
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CASE 3: Time Explicit Reactor Power Level, No Recoveries
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CASE 3: Time Explicit Reactor Power Level, upto 2 Recoveries
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CASE 3: RCS Power Down End-State Likelihoods
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CASE 2, CASE 3 Comparison



But How Does DEPM Compare?

Case Study
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DEPM Comparison

• Use the ESD from CASE 1 and FT from CASE 2.

• Replace PID software failure DEPM basic event with alternative models.

• Re-run CASE 1 analysis for each model.
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Figure 5.1 Reactor control system failure density estimates with alternative PID software failure model
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DEPM Comparison Results



Future Work

• Model Verification and Validation

• Automated Model Generation

• Incorporate Human Actions

• Expand the Case Studies

• Extend Applications
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Thank You
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