A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Arjun Earthperson

Department of Nuclear Engineering North Carolina State University

August 4, 2025

Education

- MS, Nuclear Engineering, North Carolina State University (2023) Thesis: "Integrating Dual Error Propagation into Dynamic Event Trees to Support Fission Battery Probabilistic Risk Assessments"
- BS, Electrical Engineering, University of California, Los Angeles (2017)
 Capstone: "Integer Hardware Optimizations on TI-C6000 DSPs for Low-Power IoT Applications"

Work Experience

- Intern, Idaho National Laboratory (Summer 2021)
 Project: Coupled OpenPRA's OpenEPL engine with EMRALD.
- **Programmer**, The B. John Garrick Institute for the Risk Sciences, UCLA (2018–2020) Developed the Hybrid Causal Logic and Phoenix human reliability assessment web applications.

Awards

- 1st Place Graduate Student Winner, ASME SERAD Student Safety Innovation Challenge (2023)
 Paper: Introducing OpenPRA: A Web-Based Framework for Collaborative Probabilistic Risk Assessment
- **Graduate Merit Award**, College of Engineering, NCSU (Summer 2025)

A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

L About Me

Research Contributions

Software

- [1] a-earthperson/mcSCRAM. Data-Parallel Monte Carlo probability estimation, forked from SCRAM. URL: https://github.com/a-earthperson/mcSCRAM.
- [2] openpra-org/inverse-canopy. Tensorflow-based library for learning PRA model parameters. URL: https://github.com/openpra-org/inverse-canopy.
- [3] openpra-org/monorepo. End-to-end PRA modeling and quantification solution. URL: https://github.com/openpra-org/openpra-monorepo.
- [4] openpra-org/openepl-engine. Probablistic model checking on Dual-Error Propagation Models. URL: https://github.com/openpra-org/openepl-engine.
- [5] openpra-org/PRAcciolini. PRA model meta-conversion utility. URL: https://github.com/openpra-org/PRAcciolini.

Journal Articles

- [1] Arjun Earthperson, Mihai A. Diaconeasa. "Integrating Commercial-Off-The-Shelf Components into Radiation-Hardened Drone Designs for Nuclear-Contaminated Search and Rescue Missions". en. In: Drones 7.8 (2023). Number: 8 Publisher: Multidisciplinary Digital Publishing Institute, p. 528. ISSN: 2504-446X. DOI: 10.3390/drones7080528. URL: https://www.mdpi.com/2504-446X/7/8/528 (visited on 12/03/2024).
- [2] Arjun Earthperson, Courtney M. Otani, Daniel Nevius, Steven R. Prescott, Mihai A. Diaconeasa. "A combined strategy for dynamic probabilistic risk assessment of fission battery designs using EMRALD and DEPM". en. In: Progress in Nuclear Energy 160 (2023), p. 104673. ISSN: 0149-1970. DOI: 10.1016/j.pnucene.2023.104673. URL: https://www.sciencedirect.com/science/article/pii/S0149197023001087 (visited on 03/30/2023).
- [3] Elaheh Rabiei, Lixian Huang, Hao-Yu Chien, Arjun Earthperson, Mihai A Diaconeasa, Jason Woo, Subramanian Iyer, Mark White, Ali Mosleh. "Method and software platform for electronic COTS parts reliability estimation in space applications". en. In: Proceedings of the Institution of Mechanical Engineers, Part 0: Journal of Risk and Reliability (2021), p. 1748006X21998231. ISSN: 1748-006X, 1748-0078. DOI: 10.1177/1748006X21998231. URL: http://journals.sagepub.com/doi/10.1177/1748006X21998231 (visited on 03/25/2021).

L About Me

Research Contributions

Conference Papers

- [1] Egemen Aras, **Arjun Earthperson**, Hasibul Rasheeq, Asmaa Salem Farag, Stephen Wood, Jordan Boyce, Mihai Diaconeasa. "Introducing OpenPRA's Quantification Engine: Exploring Capabilities, Recognizing Limitations, and Charting the Path to Enhancement". In: Las Vegas, NV: American Nuclear Society, 2024. DOI: doi.org/10.13182/T130-43362.
- [2] Arjun Earthperson, Egemen Aras, Asmaa Salem Farag, Mihai Diaconeasa. "Towards a Deep-Learning based Heuristic for Optimal Variable Ordering in Binary Decision Diagrams to Support Fault Tree Analysis". In: Las Vegas, NV: American Nuclear Society, 2024.
- [3] Arjun Earthperson, Priyanka Pandit, Mihai Diaconeasa. "Implementing Multiple Control Paths in the Dual Error Propagation Graph for Stochastic Failure Analysis of Digital Instrumentation and Control Systems". In: Las Vegas, NV: American Nuclear Society, 2024. DOI: doi.org/10.13182/T130-43400. URL: https://epubs.ans.org/7a=56419.
- [4] Arjun Earthperson, Priyanka Pandit, Mihai Diaconeasa. "Quantifying Safety System Unavailability Margins via Inverse Estimation of Event Sequence Frequencies". In: Las Vegas, NV: American Nuclear Society, 2024.
- [5] Priyanka Pandit, Arjun Earthperson, Mihai Diaconeasa. "Laying the Foundations for the Development of a Probabilistic Model Checking Method to Quantify Common Cause Failure Parameters in Digital Instrumentation and Control". In: Las Vegas, NV: American Nuclear Society, 2024. DOI: doi.org/10.13182/T130-43603.
- [6] Priyanka Pandit, **Arjun Earthperson**, Mihai Diaconeasa. "Leveraging Inverse Uncertainty Quantification to Enhance the Resilience of Nuclear Power Plant Construction Duration Estimation". In: Las Vegas, NV: American Nuclear Society, 2024. DOI: doi.org/10.13182/T130-43602.
- [7] Asmaa Salem Farag, Amir Afzali, Yasir Arafat, Matt Loszak, **Arjun Earthperson**, Mihai Diaconeasa. "Aalo Atomics' High Level Licensing Strategy". In: Las Vegas, NV: American Nuclear Society, 2024.

- About Me

Research Contributions

- [8] Asmaa Salem Farag, S Wood, Arjun Earthperson, Egemen Aras, Jordan Boyce, Mihai Diaconeasa. "Evaluating PRA Tools for Accurate and Efficient Quantifications: A Follow-Up Benchmarking Study Including FTREX". In: Las Vegas, NV: American Nuclear Society, 2024. DOI: doi.org/10.13182/T130-43377.
- [9] Egemen Aras, Asmaa Farag, Arjun Earthperson, Mihai Diaconeasa. "Method of Developing a SCRAM Parallel Engine for Efficient Quantification of Probabilistic Risk Assessment Models". en. In: 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Knoxville, TN: American Nuclear Society, 2023, pp. 134–140. ISBN: 978-0-89448-792-7. DOI: 10.13182/PSA23-41054. URL: https://www.ans.org/pubs/proceedings/article-53973/ (visited on 04/02/2024).
- [10] Egemen Aras, Asmaa Farag, Arjun Earthperson, Mihai Diaconeasa. "Methodology and Demonstration for Performance Analysis of a Probabilistic Risk Assessment Quantification Engine: SCRAM". en. In: 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Knoxville, TN: American Nuclear Society, 2023, pp. 452–459. ISBN: 978-0-89448-792-7. DOI: 10.13182/PSA23-41053. URL: https://www.ans.org/pubs/proceedings/article-54005/ (visited on 04/02/2024).
- [11] Arjun Earthperson, Egemen M. Aras, Asmaa S. Farag, Mihai A. Diaconeasa. "Introducing OpenPRA: A Web-Based Framework for Collaborative Probabilistic Risk Assessment". In: Volume 13: Research Posters; Safety Engineering, Risk and Reliability Analysis. New Orleans, Louisiana, USA: American Society of Mechanical Engineers, 2023, V013T15A014. ISBN: 978-0-7918-8770-7. DOI: 10.1115/IMECE2023-111708. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2023/87707/V013T15A014/1196307 (visited on 04/02/2024).
- [12] Arjun Earthperson, Priyanka Pandit, Mihai Diaconeasa. "Introducing Multiple Control Paths in the Dual Error Propagation Graph for Stochastic Failure Analysis of Digital Instrumentation and Control Systems". en. In: 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Knoxville, TN: American Nuclear Society, 2023, pp. 209–218. ISBN: 978-0-89448-792-7. DOI: 10.13182/PSA23-41248. URL: https://www.ans.org/pubs/proceedings/article-53981/ (visited on 04/02/2024).

A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

- L About Me
- Research Contributions
- [13] Asmaa Farag, Egemen Aras, **Arjun Earthperson**, S. Wood, Jordan Boyce, Mihai Diaconeasa. "Preliminary Benchmarking of SAPHSOLVE, XFTA, and SCRAM Using Synthetically Generated Fault Trees with Common Cause Failures". en. In: 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Knoxville, TN: American Nuclear Society, 2023, pp. 40–49. ISBN: 978-0-89448-792-7. DOI: 10.13182/PSA23-41031. URL: https://www.ans.org/pubs/proceedings/article-53964/ (visited on 04/02/2024).
- [14] Priyanka Pandit, Arjun Earthperson, Han Bao, Mihai Diaconeasa. "Analyzing Hardware and Software Common Cause Failures in Digital Instrumentation and Control Systems Using Dual Error Propagation Method". en. in: 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Knoxville, TN: American Nuclear Society, 2023, pp. 12–21. ISBN: 978-0-89448-792-7. DOI: 10.13182/PSA23-41062. URL: https://www.ans.org/pubs/proceedings/article-53961/ (visited on 04/02/2024).
- [15] Priyanka Pandit, **Arjun Earthperson**, Daniel Nevius, Mihai Diaconeasa. "Quantifying the Likelihood of Nuclear Supply Chain Shortage Risk". en. In: 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Knoxville, TN: American Nuclear Society, 2023, pp. 668–674. ISBN: 978-0-89448-792-7. DOI: 10.13182/PSA23-41229. URL: https://www.ans.org/pubs/proceedings/article-54029/ (visited on 04/02/2024).
- [16] Molly Prins, Thomas M. O'Connell, Arjun Earthperson, Yahya A. Alzahrani, Mihai A. Diaconeasa. "Leveraging Probabilistic Risk Assessment and Machine Learning for Safety and Cost Optimization in HAZMAT Transportation". In: Volume 13: Research Posters; Safety Engineering, Risk and Reliability Analysis. New Orleans, Louisiana, USA: American Society of Mechanical Engineers, 2023, V013T15A012. ISBN: 978-0-7918-8770-7. DOI: 10.1115/IMECE2023-114273. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2023/87707/V013T15A012/1196286 (visited on 04/02/2024).
- [17] Egemen M. Aras, Asmaa S. Farag, Arjun Earthperson, Mihai A. Diaconeasa. "Benchmark Study of XFTA and SCRAM Fault Tree Solvers Using Synthetically Generated Fault Trees Models". In: Volume 9: Mechanics of Solids, Structures, and Fluids; Micro- and Nano-Systems Engineering and Packaging; Safety Engineering, Risk, and Reliability Analysis; Research Posters. Columbus, Ohio, USA: American Society of Mechanical Engineers, 2022, V009T14A016. ISBN: 978-0-7918-8671-7. DOI: 10.1115/IMECE2022-95783. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2022/86717/V009T14A016/1157443 (visited on 02/15/2023).

About Me

Research Contributions

- [18] Bineh Ndefru, Karthik Sankaran, Theresa Stewart, Ali Mosleh, **Arjun Earthperson**, Natalie Zawalick. "Risk-Informed Decision-Making Tool for Covid-19 Community Behavior and Intervention Scenario Assessment". English. In: *Proceedings of the 16th International Conference on Probabilistic Safety Assessment and Management (PSAM)*. Vol. 3. Honolulu, Hawaii, USA: Curran Associates, Inc., 2022. ISBN: 978-1-71386-375-5. URL: https://www.iapsam.org/PSAM16/papers/K845-PSAM16.pdf.
- [19] Courtney Mariko Yang Hui Otani, Robby Christian, Steven R Prescott, Mihai Diaconeasa, **Arjun Earthperson**. "Probabilistic Methods for Cyclical and Coupled Systems with Changing Failure Rates". English. In: *Report Number: INL/CON-22-66839-Rev000*. Research Org.: Idaho National Lab. (INL), Idaho Falls, ID (United States), 2022. URL: https://www.osti.gov/biblio/1885929.
- [20] Arjun Earthperson, Mihai A. Diaconeasa. "Verification Study of the Nuclear PRA for the Mars 2020 Mission Following Accidental Orbital Re-Entry". In: Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters. Virtual, Online: American Society of Mechanical Engineers, 2021, V013T14A019. ISBN: 978-0-7918-8569-7. DOI: 10.1115/IMECE2021-71359. URL: https://asmedigitalcollection.asme.org/IMECE20proceedings/IMECE2021/85697/V013T14A019/1133290 (visited on 02/04/2022).
- [21] Priyanka Pandit, Arjun Earthperson, Alp Tezbasaran, Mihai A. Diaconeasa. "A Quantitative Approach to Assess the Likelihood of Supply Chain Shortages". In: Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters. Virtual, Online: American Society of Mechanical Engineers, 2021, V013T14A023. ISBN: 978-0-7918-8569-7. DOI: 10.1116/IMECE2021-73696. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85697/V013T14A023/1133260 (visited on 02/04/2022).
- [22] Priyanka Pandit, Alp Tezbasaran, Arjun Earthperson, Mihai A. Diaconeasa. "Evaluating the Implementation of Distributed Ledger Technology for the Licensing and Regulation of Nuclear Power Plants". In: Volume 8B: Energy. Virtual, Online: American Society of Mechanical Engineers, 2021, VO8BT08A016. ISBN: 978-0-7918-8564-2. DOI: 10.1116/IMECE2021-71730. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85642/V08BT08A016/1132953 (visited on 02/04/2022).

Research Story in One Slide

- Problem. Exact PRA quantification crumbles beyond a few hundred gates; industry still waits hours-days for large models.
 Idea. Treat the *entire* PRA—event trees & fault trees—as one probabilistic DAG
- **Idea.** Treat the *entire* PRA—event trees & fault trees—as one probabilistic DAG and evaluate it via massively–parallel Monte-Carlo.
- **Enablers.** Hardware-native voting gates, a Monte-Carlo-oriented compilation pipeline, and GPU-resident bit-packed kernels.
- **4 Evidence.** Model compression; sub-percent error on $\sim 10^3$ -event graphs in <5 s on a laptop GPU.
- **Impact.** Opens path to real-time, high-fidelity risk insights and lays groundwork for dynamic & correlated extensions.

- Motivation

L The Bottleneck in Modern PRA

Why Large PRA Models Still Hurt

- Combinatorial Explosion. Minimal cut-set enumeration scales $\mathcal{O}(2^n)$; full-core reactor PRA now couples ~ 10^2 event trees and 10^3 fault trees ($\approx 10^5$ basic events).
- Reliance on Approximations. Truncation, bounding (min-cut upper bound) and rare-event heuristics trade rigour for tractability.
- Turn-around Times. State-of-practice tools still report **hours to days** for full quantification on commodity CPUs.

Hardware Opportunity

Data-Parallel Hardware is Waiting

- Consumer GPUs $> 10^{12}$ integer ops/s at < 100 W.
- Dedicated bit-manipulation units (e.g. popcount, VNNI) ideal for Boolean evaluation.
- PRA logic is embarrassingly parallel yet *under-utilizes* this silicon.

_		
	Device	Integer Ops/s
	NVIDIA A100 GPU	$\sim 2\times 10^{12}$
	RTX 3060 Laptop	$\sim 3 \times 10^{11}$
	8-core CPU	$\sim 8 imes 10^8$
	Single CPU core	$\sim 1 \times 10^8$

Peak 32-bit integer throughput (vendor specs)

Key Insight

PRA probability estimation is analogous to forward inference in a feed-forward neural network :: same hardware, different algebra.

Research Questions

- 1 How can **all** event– and fault–tree dependencies be embedded in a single probabilistic DAG amenable to high-throughput evaluation?
 2 Which data revealed Montes Coulo already base heat leaves are already CRUs for the country of the cou
- 2 Which data-parallel Monte-Carlo algorithms best leverage modern GPUs for Boolean circuits with $\geq 10^5$ nodes?
- 3 What compilation and data-structure transformations minimize *graph size* and *arithmetic intensity* without breaking Monte-Carlo unbiasedness?
- 4 How can convergence be certified in real time for probabilities spanning 10^{-0} – 10^{-8} ?
- 5 What extensions—variance reduction, discrete-event simulation—are needed for ultra-rare events and time-dependent risk?

Research Agenda

This Dissertation Contributes

- **Unified Risk Graph.** Formalized PRA models as probabilistic circuits, prove semantic equivalence.
- **Hardware–Native Gate Set.** Population-count kernels for *k*-of-*n* and cardinality gates :: exponential graph compression.
- **MC-Oriented Knowledge Compilation.** Optimizes PDAGs for throughput.
- Bit-Parallel Monte-Carlo Engine. SYCL kernels achieving massive parallelism.
- **Solution Rigorous Convergence Criteria.** Multiobjective, with formal error bounds.
- **Domain Extensions.** Common-cause failures, importance measures, and an importance-sampling prototype for rare events.
- Open-Source Release & Benchmarks. Reproducible evaluation on 43 Aralia models; code under permissive license.

Research Objective 1 Compile PRA Models into Probabilistic Circuits

Objective 1 — Unifying Risk Logic as a Probabilistic DAG

- Map event-tree branching and fault-tree gates into a single **probabilistic directed acyclic graph (PDAG)**.
- Retain exact Boolean semantics while exposing hardware-native operations (AND/OR, k-of-n, XOR).
- Provide a substrate for compilation, bit-parallel evaluation, and future dynamic extensions.

PRA Overview

The Triplet Definition of Risk

- Define risk as a set of triplets, each representing:
 - 1 What can go wrong? (S_i)
 - 2 How likely is it to happen? (L_i)
 - \blacksquare What are the consequences? (X_i)

$$R = \left\{ \left\langle S_i, L_i, X_i \right\rangle \right\}_c, \tag{1}$$

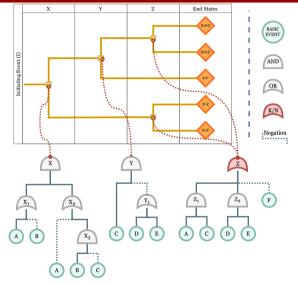
c represents completeness in enumerating *all* relevant scenarios.

☐ PRA Overview

Scenario S_i Modeling in PRA

- Each scenario unfolds from initiating events (IEs), followed by conditional branching events.
- Fundamental goal: assign probabilities to these scenarios and assess resulting outcomes (e.g., core damage, large release).
- Implementation typically uses structured diagrams such as:
 - Event Trees (ETs): forward chaining from IE to various end states.
 - Fault Trees (FTs): top-down decomposition to basic events (component failures).

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States



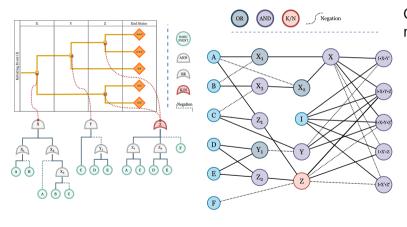
Variable	Expression
X	$(A B') \bullet (A' (B \bullet C'))$
Y	$C \bullet (D E)'$
Z	$kn[(A \bullet C), (D \bullet E), F']$

Table: Unsimplified Boolean expression for each Top Event

Small, but non-trivial structure:

- Basic events are shared.
- Some gate outputs are negated.
- Event Z is a (k=2) of n=3 gate.

Compile a Directed Acylic Graph (DAG) from Logic Model



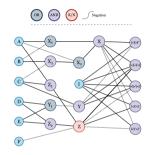
Compile **once**, evaluate millions of times:

- Layered topological order for memory coalescing.
- Preserve *k*-of-*n* gates to avoid exponential blow-up.
- Replace linear scans with hash-indexed containers.

Research Objective 1: From PRA Logic to Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

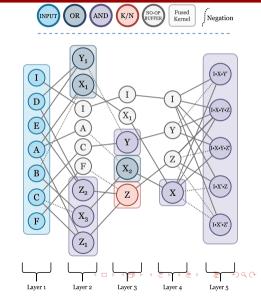
A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States



Refinements:

- Partition into layers.
- Vectorize for SIMD by fusing similar ops.
- Feed-forward only: improves caching.

Still not probabilistic: inputs, outputs are bitpacked INT64 tensors.



Knowledge Compilation and Queries

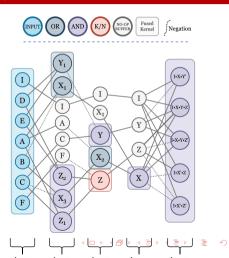
Querying the Compiled Knowledge Graph

The Simplest Type of Query: Eval(G)

- Set the inputs [on/off].
- Observe the outputs [on/off].

Can be used as a building block for an embedding ML model.

But just how fast is this?



Knowledge Compilation and Queries

From Logic to High-Throughput Evaluation

Next: How do we process **millions of scenarios per second**?

Hardware-native kernels :: Research Objective 2

Research Objective 2

Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

Boolean Truth Table – Single Bit

Χ	Y	AND	OR	XOR	NAND	NOR	XNOR
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1

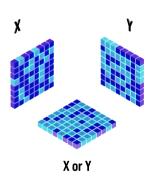
- Classical gate evaluation operates bit-by-bit. Throughput \propto number of Boolean operations.
- Perform **64** of these truth-table lookups in one machine instruction.

Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

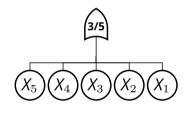
Extending to a 64-Bit Word

- Pack 64 independent Bernoulli trials into one byte.
- Bitwise primitives act independently on every bit position.
- Hardware native instructions guarantee ns latency.



Bitwise Kernels

What is a *k*-of-*n* (Voting) Gate?



Example: k = 3, n = 5

- Outputs 1 iff at least *k* of *n* inputs are 1 (majority / threshold logic).
- Classic PRA models expand this gate into basic AND/OR primitives -> leads to combinatorial blow-up.

└─ Bitwise Kernels

Naïve Expansion => Combinatorial Explosion

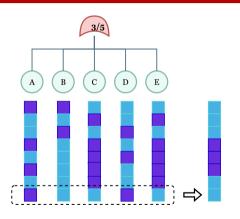
- Expansion = OR of every subset with k, ..., n true inputs.
- For n = 5, k = 3: $\binom{5}{3} = 10$ conjunction clauses => 26 total gates after binary-tree lowering.
- Complexity becomes $\Theta(2^n/\sqrt{n})$ at $k \approx n/2$.

3-of-5 gate expanded to AND/OR Sum-of-Products

└─ Bitwise Kernels

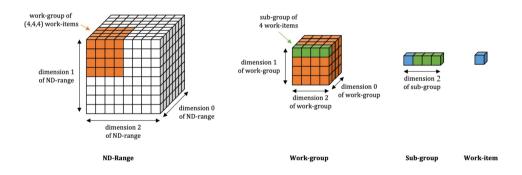
Hardware-Native Voting Gate (No Expansion)

- Preserve the gate as one vertex; kernel does bit-parallel population count.
- Complexity $\mathcal{O}(n)$ integer ops; counter width ≤ 8 bits for PRA fan-ins (256 inputs).
- Graph shrinks from $\Theta(2^n/\sqrt{n})$ to **1**. Huge memory launch savings.



The SYCL Execution Model

SYCL Execution Model in a Nutshell



The SYCL Execution Model

SYCL Execution Model in a Nutshell

Host submits gueue.submit() with a

kernel_name.

ND-Range (global 3 × local)

defines grid.

Work-Group maps to CUDA block OpenCL work-group.

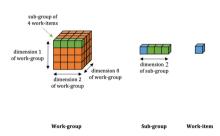
Sub-Group (warp/wavefront) gives

warp-level shuffle & ballot ops.

Device USM used for persistent bit-packed buffers.

work-group of (4,4,4) work-items

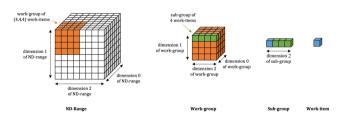
dimension 1 of ND-range dimension 2 of ND-range ND-Range

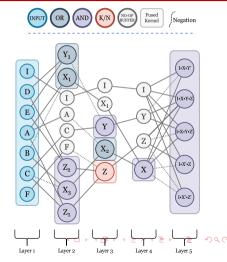


└─ Kernel Execution

Mapping PDAG Layers to SYCL Kernels

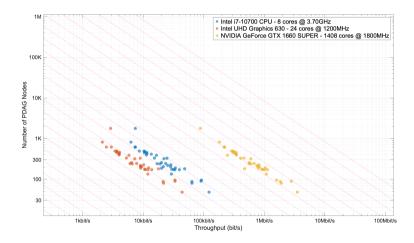
- 1 Topological sort \Rightarrow depth index d.
- All nodes with depth *d* share *identical fan-in length*. range<3> := (batch, gate, bitpack).
- One kernel per layer; gate type dispatched via template specialization.
- 4 Streams results to next-depth buffer in global memory.





Kernel Execution

Eval Query Performance on Generic Backends



└─ Kernel Execution

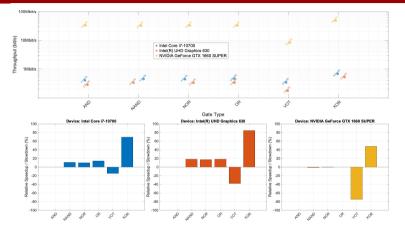


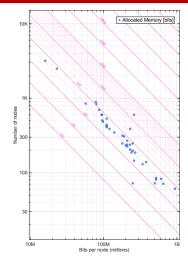
Figure: (Top) Throughput in bit/second on various backends for different gate types. (Bottom) % Relative speedup/slowdown as compared to the AND gate.

Kernel Execution

Eval Query Performance on Discrete GPUs

- Latency: 20-30 ms per layer.
- Throughput: Graph depth and VRAM bound (see plot).
- Benchmarked on Nvidia GTX 1660 [6GB].
- Graph sizes: from ≈ 50 to ≈ 2000 nodes.
- Evals: from 16M to 1B per node per pass.

Q: Are these enough samples to estimate the Expectation Query?



Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Research Objective 3

Develop data-parallel Monte-Carlo methods for estimating probabilities on unified PDAGs

Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

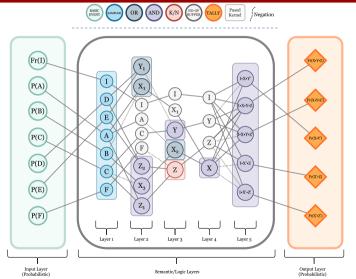
Bridging Boolean Evaluation and Probabilistic Inference

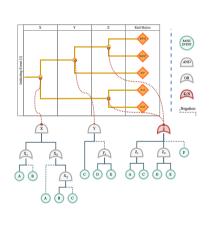
- Previous objective delivered *bit-parallel gate kernels* that evaluate a PDAG layer in $\mathcal{O}(1)$ machine words.
- To quantify risk, we must attach *probability distributions* to the PDAG leaves and propagate forward.
- Strategy: embed a Monte-Carlo engine that
 - 1 draws bit-packed Bernoulli samples for **all** basic events, and
 - 2 reuses the same gate kernels to evaluate each random draw.
- One kernel pipeline therefore suffices for **both** deterministic logic and stochastic sampling.

$A\,Data-Parallel,\,Hardware-Accelerated\,\,Monte\,\,Carlo\,\,Framework\,\,for\,\,Quantifying\,\,Risk\,\,using\,\,Probabilistic\,\,Circuits$

Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

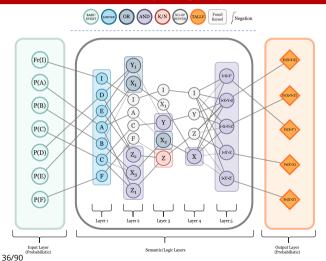
Back to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States





- Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation
- Back to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

End-to-End Sampling Pipeline (one iteration)



- 1 Basic-Event Kernel: generate random draws.
- **Gate Kernels:** evaluate PDAG layers using hardware-native logic primitives.
 - **Tally Kernel:** count number of ones, update counters, compute estimates.

└ MC Sampling Theory

Monte-Carlo Sampling over PDAGs

- 1 Draw $\mathbf{x}^{(i)} \sim \prod_{b \in \mathcal{B}} \mathsf{Bernoulli}(p_b)$ in **bit-packed** form.
- **2** Evaluate the Boolean function $F: \{0,1\}^{|\mathcal{B}|} \to \{0,1\}$ (root node) using the gate kernels.
- **3** Record $Y^{(i)} = F(\mathbf{x}^{(i)})$ (failure indicator).

After *N* iterations

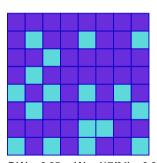
$$\widehat{P}_N = \frac{1}{N} \sum_{i=1}^N Y^{(i)}, \qquad \operatorname{SE}(\widehat{P}_N) = \sqrt{\frac{\widehat{P}_N(1-\widehat{P}_N)}{N}}.$$

Error shrinks as $\mathcal{O}(N^{-1/2})$; variance-reduction extensions discussed shortly.

└─MC Sampling Theory

Basic-Event Sampling Kernel

- Each basic event $b \in \mathcal{B}$ is modelled as an independent **Bernoulli** random variable $X_b \sim \operatorname{Bernoulli}(p_b)$.
- A single Monte–Carlo iteration packs $\omega = 8 \operatorname{sizeof}(\mathtt{bitpack_t}) = 64$ independent trials into one machine word.
- For batch index b, bit–pack p, lane λ : $X_{b,p,\lambda} \sim \text{Bernoulli}(p_b)$.
- The basic–event kernel uses the counter–based Philox–4×32–10 PRNG; counters are derived from (b, p, λ, t) , guaranteeing reproducibility and inter–thread independence.
- After one iteration ($N = BP\omega$ trials) the sufficient statistics per basic event are $s_b = \sum_{p,\lambda} X_{b,p,\lambda}$, $\widehat{\rho}_b = s_b/N$, $\operatorname{SE}(\widehat{\rho}_b) = \sqrt{\widehat{\rho}_b(1-\widehat{\rho}_b)/N}$.



$$P(A) = 0.25$$
; $p(A) = (17/64) \approx 0.6525$

MC Sampling Theory

Tally Kernel

- For a designated node v (e.g. system top event) define $Y_{p,\lambda}^{(t)} = F_v(\mathbf{X}_{\cdot,p,\lambda}^{(t)}) \in \{0,1\}.$
- **Tally kernel** executes a single SIMD popcount per bit-pack to obtain the per-iteration count $s_{\nu}^{(t)} = \sum_{\rho,\lambda} Y_{\rho,\lambda}^{(t)}$.
- Cumulative statistics after T iterations ($N_T = TN$ trials):

$$S_{\nu} = \sum_{t=1}^{T} S_{\nu}^{(t)}, \qquad \widehat{P}_{\nu} = \frac{S_{\nu}}{N_{T}}.$$

Unbiased variance estimator

$$\widehat{\sigma}_{\mathsf{v}}^2 = \frac{\widehat{\mathsf{P}}_{\mathsf{v}} \big(1 - \widehat{\mathsf{P}}_{\mathsf{v}} \big)}{\mathsf{N}_{\mathsf{T}}}.$$

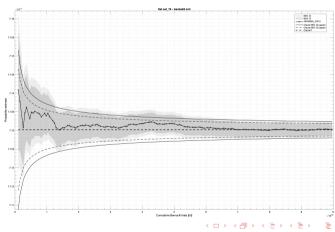
Central Limit Theorem. As $T \to \infty$

$$\frac{\widehat{P}_{\mathsf{V}} - P_{\mathsf{V}}}{\widehat{\sigma}_{\mathsf{V}}} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1).$$

MC Sampling Theory

When "More Samples" is Wasteful

Fixed iteration budgets (N large and hard-wired) risk massive oversampling when P_{ν} is moderate ($\approx 10^{-4} - 10^{-1}$).



Research Objective 4 Develop Robust Convergence Criteria

Criterion 1: Frequentist Half-Width (Wald)

Let $\{Y^{(i)}\}_{i=1}^N$ be i.i.d. Bernoulli trials with $P = \Pr[Y = 1]$. The estimator $\widehat{P}_N = \frac{1}{N} \sum_i Y^{(i)}$ obeys the CLT:

$$\sqrt{N} (\widehat{P}_N - P) \xrightarrow{d} \mathcal{N} (0, P(1 - P)).$$

A $(1 - \alpha)$ two-sided **Wald** interval is therefore

$$\widehat{P}_N \pm z_{1-\alpha/2} \sqrt{\frac{\widehat{P}_N(1-\widehat{P}_N)}{N}}.$$

Stopping rule

Half-width: $h_N^{\text{lin}}(z) = z\sqrt{\widehat{P}_N(1-\widehat{P}_N)/N}$. Declare convergence when $h_N^{\text{lin}}/\widehat{P}_N \leq \varepsilon_{\text{rel}}$.

Intuition

Shrinks a *relative* confidence band around the estimate; fast for moderate P, slow for rare events where $\widehat{P}_N \ll 10^{-4}$.

Criterion 2: Bayesian Credible Interval (Jeffreys prior)

Prior $p \sim \text{Beta}(\frac{1}{2},\frac{1}{2})$ is invariant under re-parameterization. After s successes and f failures the posterior is

$$p \mid \mathsf{data} \sim \mathsf{Beta}(\mathsf{s} + \frac{1}{2}, f + \frac{1}{2}).$$

The central (1-lpha) credible interval $[q_t,q_{1-t}]$ with t=lpha/2 has

Stopping rule

$$\textbf{half-width}\ h_{N}^{\text{Bayes}} = (q_{1-t} - q_{t})/2. \ \text{Convergence when}\ h_{N}^{\text{Bayes}}/\widehat{P}_{N} \leq \varepsilon_{\text{rel}}^{\text{Bayes}}.$$

Intuition

Integrates parameter uncertainty; maintains correct coverage even when \widehat{P}_N is based on only a handful of observed failures (rare-event tails).

Criterion 3: Information-Theoretic Gain

Posterior entropy of Beta (α, β) is

$$H(\alpha, \beta) = \ln B(\alpha, \beta) - (\alpha - 1)\psi(\alpha) - (\beta - 1)\psi(\beta) + (\alpha + \beta - 2)\psi(\alpha + \beta).$$

After a batch $(\Delta s, \Delta f)$ the **information gain** is

$$I_{\mathsf{batch}} = H(\alpha, \beta) - H(\alpha + \Delta \mathsf{s}, \ \beta + \Delta f).$$

Stopping rule

Stop when $I_{\text{batch}} < I_{\text{min}}$ bits (default 10^{-4}).

Intuition

Scale-free; halts when each new batch conveys negligible Shannon information, preventing oversampling when *P* is either very small or very large.

On-the-Fly Updates

Composite Convergence Criteria

Step-1: Statistical precision per node ν

$$N_{\text{req}}^{(v)} = \max\Bigl(N_{arepsilon}^{(v)},\; N_{ ext{log}}^{(v)},\; N_{ ext{Bayes}}^{(v)},\; N_{ ext{info}}^{(v)}\Bigr)$$

where

$$\begin{split} & \textit{N}_{\varepsilon}^{(\textit{v})} := \Big\lceil \frac{z^2 \, \widehat{\textit{P}}_{\textit{V}}(1 - \widehat{\textit{P}}_{\textit{V}})}{(\varepsilon_{\text{rel}} \widehat{\textit{P}}_{\textit{V}})^2} \Big\rceil, \\ & \textit{N}_{\log}^{(\textit{v})} := \Big\lceil \frac{z^2 (1 - \widehat{\textit{P}}_{\textit{V}})}{(\varepsilon^{\log} \ln 10)^2 \widehat{\textit{P}}_{\textit{V}}} \Big\rceil, \\ & \textit{N}_{\text{Bayes}}^{(\textit{v})} := \text{Eq. (Jeffreys)}, \\ & \textit{N}_{\text{info}}^{(\textit{v})} := \big\lceil (2 \ln 2) I_{\min}^{-1} \big\rceil. \end{split}$$

On-the-Fly Updates

Composite Stopping Rule

Step-2: Global precision budget

$$N_{\mathsf{req}} = \max_{v \in \mathcal{V}} N_{\mathsf{req}}^{(v)}.$$

Step-3: Translate to iteration budget

$$T_{\varepsilon} = \left\lceil \frac{N_{\text{req}}}{N} \right\rceil, \qquad N = BP\omega.$$

Step-4: External user limits

$$T_{\max}$$
 (iteration cap), au_{\max} (wall-clock cap).

Stopping time

$$T = \min\{T_{\varepsilon}, T_{\max}, T_{\tau}\}, \qquad T_{\tau} = \min\{t : \tau(t) \geq \tau_{\max}\}.$$

Intuition

- Statistical criteria guarantee *precision*. T_{ε} dominates when resources are ample.
- Rule is conservative: run halts as soon as any limit is met.

On-the-Fly Updates

On-the-Fly Diagnostics & Accuracy Metrics

Additional diagnostics when true P is known (for debugging).

Metric	Formula
Absolute error	$\Delta_{v} = \widehat{P}_{v} - P_{v} $
Relative error	$\delta_{v} = \Delta_{v}/P_{v}$
Mean-squared error	$MSE_{v} = (\widehat{P}_{v} - P_{v})^2$
Linear half-width	$h_{\rm v}^{\rm lin} = z\sqrt{\widehat{P}_{\rm v}(1-\widehat{P}_{\rm v})/N}$
Log half-width	$h_{v}^{\log} = rac{z \widehat{\sigma}_{v}}{\widehat{\rho}_{v} \ln 10}$
Bayesian half-width	$h_{\nu}^{\text{Bayes}} = \frac{q_{1-t} - q_t}{q_{1-t}}$
Information gain	$I_{\text{batch}} = H(\alpha, \beta) - H(\alpha + \Delta s, \beta + \Delta f)$
z-score	$Z_{V} = \frac{\widehat{P}_{V} - P_{V}}{\widehat{\sigma}_{V}}$ $\chi_{V}^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{0} - E_{0})^{2}}{E_{0}}$
χ^2 goodness-of-fit	$\chi_{\nu}^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{0} - E_{0})^{2}}{E_{0}}$

Research Objective 5 Case Studies and Benchmarks

LAralia Fault Tree Data Set

Overview: Aralia Dataset

- **Dataset Composition:** The Aralia collection consists of 43 distinct fault trees, each with varying numbers of basic events (BEs), gate types (AND, OR, K/N, XOR), and minimal cut-set counts.
- **Diverse Problem Sizes:** Small trees (e.g. 25–32 BEs) through large models with over 1,500 BEs.
- Wide Probability Range: Top-event probabilities spanning from rare events near 10^{-13} to fairly likely failures with probability above 0.7.
- **Model Variability:** Some trees are primarily AND/OR, others incorporate more advanced gates (K/N, XOR, NOT), providing thorough coverage of typical (and atypical) fault tree logic structures.

Aralia Fault Tree Data Set

	Fault Tree	Basic Events	Logic Gates					Minimal	Top Event
#			Total	AND	K/N	XOR	NOT	Cut Sets	Probability
1	baobab1	61	84	16	9	-	-	46,188	1.01708E-04
2	baobab2	32	40	5	6	-	-	4,805	7.13018E-04
3	baobab3	80	107	46	-	-	-	24,386	2.24117E-03
4	cea9601	186	201	69	8	-	30	130,281,976	1.48409E-03
5	chinese	25	36	13	-	-	-	392	1.17058E-03
6	das9201	122	82	19	-	-	-	14,217	1.34237E-02
7	das9202	49	36	10	-	-	-	27,778	1.01154E-02
8	das9203	51	30	1	-	-	-	16,200	1.34880E-03
9	das9204	53	30	12	-	-	-	16,704	6.07651E-08
10	das9205	51	20	2	-	-	-	17,280	1.38408E-08
11	das9206	121	112	21	-	-	-	19,518	2.29687E-01
12	das9207	276	324	59	-	-	-	25,988	3.46696E-01
13	das9208	103	145	33	-	-	-	8,060	1.30179E-02
14	das9209	109	73	18	-	-	-	8.20E+10	1.05800E-13
15	das9601	122	288	60	36	12	14	4,259	4.23440E-03
16	das9701	267	2,226	1,739	-	-	992	26,299,506	7.44694E-02
17	edf9201	183	132	12	-	-	-	579,720	3.24591E-01
18	edf9202	458	435	45	-	-	-	130,112	7.81302E-01
19	edf9203	362	475	117	-	-	-	20,807,446	5.99589E-01
20	edf9204	323	375	106	-	-	-	32,580,630	5.25374E-01
21	edf9205	165	142	30	-	-	-	21,308	2.09351E-01

Aralia Fault Tree Data Set

22	edf9206	240	362	126	-	-	-	385,825,320	8.61500E-12
23	edfpa14b	311	290	70	-	-	-	105,955,422	2.95620E-01
24	edfpa14o	311	173	42	-	-	-	105,927,244	2.97057E-01
25	edfpa14p	124	101	42	-	-	-	415,500	8.07059E-02
26	edfpa14q	311	194	55	-	-	-	105,950,670	2.95905E-01
27	edfpa14r	106	132	55	-	-	-	380,412	2.09977E-02
28	edfpa15b	283	249	61	-	-	-	2,910,473	3.62737E-01
29	edfpa15o	283	138	33	-	-	-	2,906,753	3.62956E-01
30	edfpa15p	276	324	33	-	-	-	27,870	7.36302E-02
31	edfpa15q	283	158	45	-	-	-	2,910,473	3.62737E-01
32	edfpa15r	88	110	45	-	-	-	26,549	1.89750E-02
33	elf9601	145	242	97	-	-	-	151,348	9.66291E-02
34	ftr10	175	94	26	-	-	-	305	4.48677E-01
35	isp9601	143	104	25	1	-	-	276,785	5.71245E-02
36	isp9602	116	122	26	-	-	-	5,197,647	1.72447E-02
37	isp9603	91	95	37	-	-	-	3,434	3.23326E-03
38	isp9604	215	132	38	-	-	-	746,574	1.42751E-01
39	isp9605	32	40	8	6	-	-	5,630	1.37171E-05
40	isp9606	89	41	14	-	-	-	1,776	5.43174E-02
41	isp9607	74	65	23	-	-	-	150,436	9.49510E-07
42	jbd9601	533	315	71	-	-	-	150,436	7.55091E-01
43	nus9601	1,567	1,622	392	47	-	-	unknown	unknown
_									

Benchmarking Procedure

Benchmarking Setup: Hardware and Environment

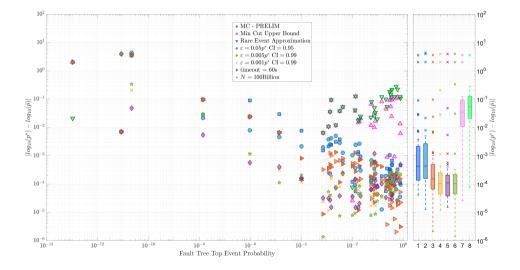
■ Target Hardware:

- GPU: NVIDIA® GeForce GTX 1660 SUPER (6 GB GDDR6, 1,408 CUDA cores).
- CPU: Intel® CoreTM i7-10700 (2.90 GHz, turbo-boost, hyperthreading).

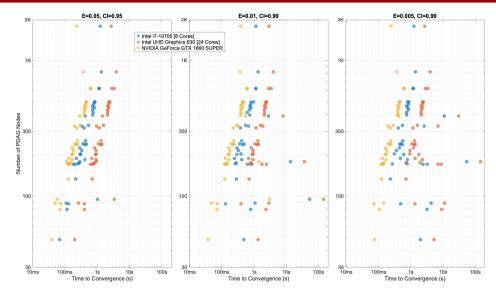
■ Software Stack:

- SYCL-based (AdaptiveCpp/HipSYCL), with LLVM-IR JIT for kernel compilation.
- Compiler optimization at -03 for efficient code generation.
- Repeated runs (5+) to mitigate transient variations.
- **Measured Time:** Includes entire wall-clock duration, from host-device transfers and JIT compilation to final result collection.

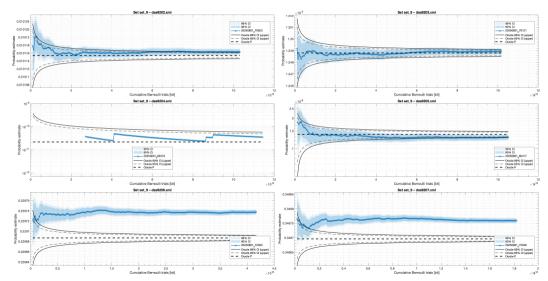
Accuracy Benchmarks



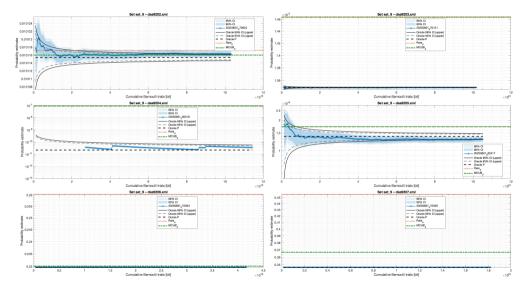
Accuracy vs. Time to Convergence



Convergence Runs



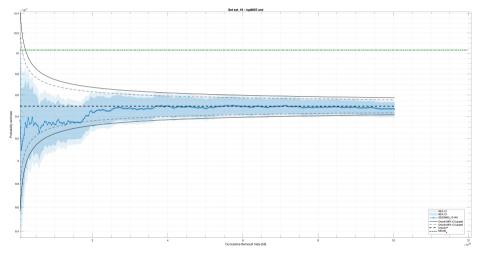
Convergence Runs, Comparison with MCUB, REA



 $A\ Data-Parallel,\ Hardware-Accelerated\ Monte\ Carlo\ Framework\ for\ Quantifying\ Risk\ using\ Probabilistic\ Circuits$

Research Objective 5: Case Studies and Benchmarks

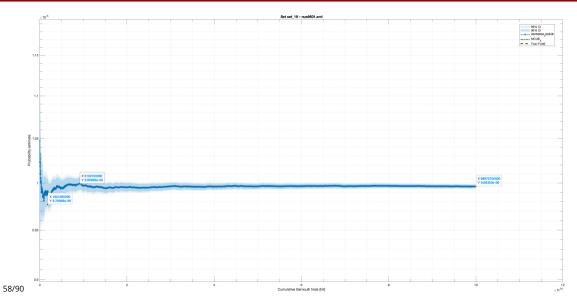
Convergence Run – Rare Event, Comparison with MCUB



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 5: Case Studies and Benchmarks

Convergence Free Run



40.

Aralia Fault Tree Data Set - Convergence for Rare Events

	Fault	Mean	Absolute Error - lo			Runtime	
# Tree		REA	мсив	Monte Carlo			[sec]
1	baobab1	1.45156×10^{-4}	1.45156×10^{-4}	7.61880×10^{-3}	2.5	$\times 10^8$	0.262
2	baobab2	6.48628×10^{-3}	6.34705×10^{-3}	1.54436×10^{-3}	$^{2.5}$	$\times 10^8$	0.209
3	baobab3	1.21509×10^{-2}	1.16701×10^{-2}	2.24843×10^{-4}	$^{2.4}$	$\times 10^8$	0.259
4	cea9601	9.36195×10^{-2}	9.32207×10^{-2}	2.41802×10^{-3}	1.2	$\times 10^8$	0.262
5	chinese	1.08742×10^{-2}	1.06354×10^{-2}	2.14601×10^{-3}	9.4	$\times 10^8$	0.277
6	das9201	1.26649×10^{-1}	1.22765×10^{-1}	5.49963×10^{-5}	2.3	$\times 10^8$	0.279
7	das9202	7.72743×10^{-5}	2.57596×10^{-5}	1.20232×10^{-4}	5.2	$\times 10^8$	0.295
8	das9203	3.59019×10^{-2}	3.55935×10^{-2}	2.31768×10^{-4}	5.2	$\times 10^8$	0.292
9	das9204	1.68086×10^{-1}	1.68087×10^{-1}	1.13495×10^{-1}	6.1	$\times 10^8$	0.292
10	das9205	9.63825×10^{-2}	9.63725×10^{-2}	2.76190×10^{-2}	3.3	$\times 10^9$	0.958
11	das9206	5.43561×10^{-2}	8.89660×10^{-4}	3.51548×10^{-4}	2.0	$\times 10^8$	0.269
12	das9207	1.18486×10^{-1}	2.45492×10^{-2}	1.36519×10^{-4}	9.5	$\times 10^7$	0.282
13	das9208	4.12808×10^{-2}	3.81968×10^{-2}	9.34017×10^{-5}	2.5	$\times 10^8$	0.307
14	das9209	2.11242×10^{-2}	1.70245×10^{1}			-	-
15	das9601	5.29285×10^{-2}	5.19122×10^{-2}	6.67174×10^{-4}	1.1	$\times 10^8$	0.256
16	das9701	5.02804×10^{-2}	3.37565×10^{-2}	6.22978×10^{-4}	2.3	$\times 10^7$	0.273
17	edf9201	1.48012×10^{-1}	5.36182×10^{-2}	2.88906×10^{-4}	1.8	$\times 10^8$	0.315
18	edf9202	1.07181×10^{-1}	6.05976×10^{-3}	4.53900×10^{-4}	7.8	$\times 10^7$	0.271
19	edf9203	2.22146×10^{-1}	1.17293×10^{-1}	3.27993×10^{-4}	8.0	$\times 10^7$	0.302
20	edf9204	2.79531×10^{-1}	1.05591×10^{-1}	1.31416×10^{-4}		$\times 10^7$	0.298
21	edf9205	9.94339×10^{-2}	4.46260×10^{-2}	5.60146×10^{-5}	1.9	$\times 10^8$	0.284
22	edf9206	6.98797×10^{-3}	7.07775×10^{-3}				-
	16 4 41		2			7	

Research Objective 6

Develop Importance Measures, Extend Common-Cause-Failure Analysis

Compute On-the-Fly Importance Measures

Why Compute Importance Measures?

- PRA stakeholders ask: "Which components matter most?"
- Classical sensitivity indices (Birnbaum, Fussell-Vesely, RAW, RRW) quantify the change in top-event probability when basic-event reliabilities shift.
- Goal: embed these metrics **inside** the MC engine no extra cut-set enumeration, no separate gate passes.

Compute On-the-Fly Importance Measures

Classical Definitions (per basic event i)

Measure	Analytical Definition
Birnbaum (MIF)	$\begin{aligned} \text{MIF}_{i} &= \frac{\partial P_{\text{top}}}{\partial p_{i}} \\ \text{CIF}_{i} &= \text{MIF}_{i} \frac{p_{i}}{P_{\text{top}}} \\ \text{DIF}_{i} &= \frac{\Pr\{X_{i} = 1 \land Z = 1\}}{p_{i}P_{\text{top}}} \end{aligned}$
Critical (CIF)	$CIF_i = MIF_i \frac{\rho_i}{\rho_{top}}$
Diagnostic (DIF)	$DIF_{i} = \frac{\Pr\{X_{i} = 1 \land Z = 1\}}{\rho_{i} P_{top}}$
RAW / RRW	Risk achievement / reduction worth — counterfactual probabilities when X_i forced to 1 or 0

Key insight: All measures reduce to combinations of three sample proportions:

$$\widehat{p}_i = \frac{s_i}{n}, \quad \widehat{p}_0 = \frac{s_0}{n}, \quad \widehat{p}_{0,i} = \frac{s_{0,i}}{n}.$$

Compute On-the-Fly Importance Measures

MC Estimation with Minimal Sufficient Statistics

Per-iteration tallies

$$s_i \leftarrow s_i + \operatorname{popcount}(X_i), \quad s_0 \leftarrow s_0 + \operatorname{popcount}(Z), \quad s_{0,i} \leftarrow s_{0,i} + \operatorname{popcount}(X_i \& Z).$$

Only **one** extra bitwise AND + popcount per basic event.

Estimator example (Birnbaum):

$$\widehat{\mathrm{MIF}}_i = \frac{\widehat{p}_{0,i} - \widehat{p}_0 \widehat{p}_i}{\widehat{p}_i (1 - \widehat{p}_i)}.$$

Compute On-the-Fly Importance Measures

MC Estimation with Minimal Sufficient Statistics

Convergence Guarantee

Each counter is a sum of n = TN independent Bernoulli trials:

$$\sqrt{n}(\widehat{p}-p) \xrightarrow{d} \mathcal{N}(0, p(1-p)).$$

By the delta method the importance estimators inherit $\mathcal{O}(n^{-1/2})$ variance.

Same composite stopping rule (half-width, credible interval, info-gain) thus applies without modification.

Common-Cause Failure (CCF) in Monte-Carlo

Motivation: Common-Cause Failures

- Independent failure assumption breaks down when components share hidden dependencies (environment, manufacturing defects, etc.).
- Neglecting CCFs can under-predict top-event probability by orders of magnitude.
- Goal: incorporate parametric CCF models *without* disrupting the bit-parallel Monte-Carlo pipeline.

Common-Cause Failure (CCF) in Monte-Carlo

Graph Construction for a CCF Group $\mathcal C$

- **Scale independent leaves.** Each basic event $c_i \in \mathcal{C}$ keeps an independent probability $(1 \lambda_{\mathsf{ccf}}) p_{c_i}$.
- Insert CCF trigger variable S_C with failure probability $\lambda_{ccf} = \sum_{k>2} \pi_{C,k}$.
- **CCF-root gate** $G_C = S_C \lor c_1 \lor \cdots \lor c_m$ routes either independent or common shock to the rest of the graph.
- 4 (Optional) **Multiplicity shadow gates** $H_{\mathcal{C}}^{(k)}$ realize models that distinguish the number k of simultaneously failed components.

Key property

All new nodes are *gates*; the set of basic events is unchanged, so the Monte-Carlo sampling kernel remains untouched.

Research Objective 6: Domain Specific Extensions
Common-Cause Failure (CCF) in Monte-Carlo

MC Treatment and Convergence Guarantees

Sampling logic

independently. Correlation enters only via logic connectivity.

■ Leaves $\{S_C, c_1, \ldots, c_m\}$ are sampled

- Same bit-packing kernel, same PRNG counters – zero performance overhead.
- simultaneous bits in the shadow gate; implemented by one extra OR reduction.

■ Trigger variable firing forces

Unbiasedness Variance

Indicator Z of any top-level node is still a Bernoulli random variable.

$$\mathrm{Var}[Z] = P(1-P), \qquad P = \Pr[Z=1].$$

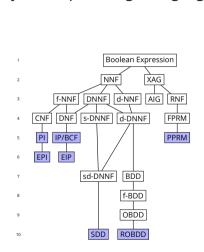
Therefore all proofs for half-width, Bayesian interval, and information-gain criteria remain valid **unchanged**. CCF merely shifts *P*.

Take-away: CCF groups integrate into MC with *zero* sampler modification; _{67/9}Convergence diagnostics from Research Objective 4 apply verbatim.

Research Objective 6: Domain Specific Extensions

Knowledge Compilation for Monte-Carlo

Hierarchy of compiled target languages. Blue nodes represent canonical forms.



Acronym	Full form
NNF	Negation Normal Form
XAG	XOR-And-Inverter Graph
AIG	And-Inverter Graph
ANF/RNF	Algebraic/Ring Normal Form
f-NNF	Flat Negation Normal Form
DNNF	Decomposable Negation Normal Form
d-NNF	Deterministic Negation Normal Form
FPRM	Fixed Polarity Reed-Muller
CNF	Conjunctive Normal Form
DNF	Disjunctive Normal Form
s-DNNF	Smooth/Structured Decomposable Negation No
d-DNNF	Deterministic Decomposable Negation Normal F
sd-DNNF	Smooth/Structured Deterministic Decomposable
PPRM	Positive Polarity Reed-Muller
PI	Prime Implicate
IP	Prime Implicant
BCF	Blake Canonical Form
EPI	Essential Prime Implicate
EIP	Essential Prime Implicant
BDD	Binary Decision Diagram
f-BDD	Free/Read-Once Binary Decision Diagram
OBDD	Ordered Binary Decision Diagram
SDD	Sentential Decision Diagram
RoBDD	Reduced Ordered Binary Decision Diagram

Knowledge Compilation for Monte-Carlo

Two Very Different Compilation Objectives

Exact-Inference KC

- Goal: produce a *tractable* normal form where queries such as model counting, SAT, or entropy can be answered in $\mathcal{O}(|G|)$.
- Constraints: decomposability, determinism, smoothness ⇒ DNNF, SDD, ROBDD, etc.
- Trade-off: often expands the graph (CNF → OBDD may grow exponentially).

Monte-Carlo KC

- Goal: maximize throughput of bit-parallel sampling while keeping the estimator unbiased.
- Constraints: none beyond logical equivalence; decomposability/determinism not required.
- Opportunity: aggressively compress the PDAG, collapse voting sub-trees, and flatten deep gate stacks to minimise kernel launches.

Knowledge Compilation for Monte-Carlo

Enter: Naive MC-Specific KC Pipeline (Levels 0 ... 8)

- **1 L0 Baseline** parse PDAG; keep *k*-of-*n* and XOR unexpanded.
- **2 L1 Null/Negation** eliminate vacuous gates, absorb single negations.
- 3 L2 Definition Coalescing merge replicas, detect modules.
- **L3 Boolean Optimization** distributivity detection, Shannon expansion.
- **L4–L5** condensed passes that, in exact KC, would be repeated; here executed once until fixed-point.
- **6 L6 Specialization** map VOT(k/n) to hardware-native gate *instead of* DNF explosion.
- **Z** L7 Negation Pushdown only when it reduces bitwise polarity ops.
- **8 L8 Final Coalescing** stop when further compression <1

Result

Median gate count shrinks by **1.3**×; worst-case fan-in compression up to $2^n/\sqrt{n}$. Compile wall-time drops 186× compared to recursive normalizer.

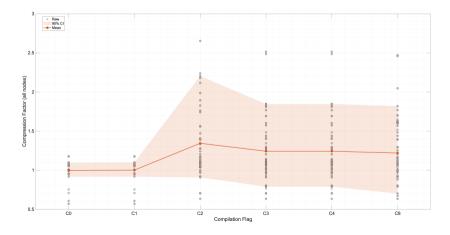
Knowledge Compilation for Monte-Carlo

Why "Relaxed" KC Works for MC

- **Throughput**: fewer gates \Rightarrow fewer kernel launches and lower memory traffic. MC cost is $\mathcal{O}(|G|)$ per iteration: shrink $|G| \Rightarrow$ linear speed-up.
- **Estimator Unbiasedness**: every transformation is a logical equivalence; Monte-Carlo estimator \widehat{P} remains unbiased $(\mathbb{E}[\widehat{P}] = P)$.
- Variance: graph compression leaves Bernoulli variance P(1-P) unchanged; half-width formulas from Research Objective 4 stay valid.

Knowledge Compilation for Monte-Carlo

Compression Microbenchmark



Knowledge Compilation for Monte-Carlo

Compression Microbenchmark



Importance Sampling for Ultra-Rare Events

Why Importance Sampling?

- Plain MC requires $\mathcal{O}(P^{-1}(1-P))$ trials to observe even a *single* failure when $P \ll 10^{-6}$. Wall-time grows to hours.
- Importance Sampling (IS) biases the basic-event probabilities to force rare scenarios to occur more frequently, then re-weights samples to remain unbiased.
- Objective: integrate IS into the existing bit-parallel kernel with minimal memory and arithmetic overhead.

Research Objective 6: Domain Specific Extensions
Importance Sampling for Ultra-Rare Events

Self-Normalized Importance Sampling (per trial)

Biasing rule

$$q_i = \operatorname{clip}(c p_i, \varepsilon, 1 - \varepsilon), \qquad c > 1.$$

Draw $X^* \sim \mathrm{Bern}(q_i)$ independently. Likelihood ratio for one component:

$$\ell_i(X_i^*) = \frac{p_i^{X_i^*} (1 - p_i)^{1 - X_i^*}}{q_i^{X_i^*} (1 - q_i)^{1 - X_i^*}}.$$

Trial weight $L = \prod_i \ell_i(X_i^*)$.

Point estimator

$$\widehat{P}_{IS} = \frac{\sum_{k=1}^{N} L^{(k)} Z^{(k)}}{\sum_{k=1}^{N} L^{(k)}} \quad (\text{self-normalized}).$$

Implementation Hooks

- Store q_i and two 32-bit pre-computed ratios p_i/q_i , $(1-p_i)/(1-q_i)$.
 - Extra multiplication per basic event to accumulate log *L*; fused into existing sampling loop.
 - One additional reduction per batch for ΣL and ΣLZ .

Importance Sampling for Ultra-Rare Events

Variance Reduction and Stopping Rule

- Classical MC variance: $\sigma_{MC}^2 = P(1-P)/N$.
- IS variance:

$$\sigma_{\text{IS}}^2 = \frac{1}{N} \Big(\mathbb{E}_q[L^2 Z] - P^2 \Big) \ll \sigma_{\text{MC}}^2$$
 if bias factor c well chosen.

- For tilt factor $c = 10^3$ and $P = 10^{-8}$, empirical runs show 100–200× variance reduction.
- Convergence guarantee—because \widehat{P}_{IS} is still a sample mean of i.i.d. weighted Bernoullis, the CLT and all three statistical half-width criteria from Research Objective 4 apply *unchanged* with $\widehat{\sigma}_{IS}$.

Practical Tip

Auto-tune c via pilot runs that seek weight coefficient of variation $\mathrm{CV}\approx 1$; implemented as a future work item.

Limitations & Future Work

Where the Framework Still Falls Short

- Ultra-rare probabilities ($P < 10^{-8}$) require a mature importance sampling engine.
- **Hardware dependence**: peak throughput assumes wide SIMD + high memory bandwidth; CPU-only runtimes are ~100× slower.
- **Static logic only**: time-dependent repair, mission phases, or feedback loops not yet supported.
- **Limited dependence models**: beyond CCF, no general copula or Bayesian-network sampling engine.
- **Manual kernel tuning**: batch/bitpack geometry must be tuned per device family; no auto-tuner.
- Validation scope: full-scale industry PRA (e.g. Generic PWR) not yet replicated end-to-end.

Future Work Roadmap

Near-Term (1 yr)

- Adaptive variance-reduction palette: stratified, antithetic, multi-level MC.
- GPU-resident auto-tuner for kernel geometry and memory layout.
- Weighted variance estimator + half-width for importance sampling.
- Extended benchmark suite (Aralia + Generic PWR).

Mid-Term (3 yr)

- Discrete-event simulation back-end for mission-time and repair modeling.
- Copula / Bayesian-network engine for correlated uncertainties.
- Gradient-based calibration via Boolean auto-diff + SGD.
- Streaming mode for real-time risk dashboards.

Ultimate vision: a portable, self-optimizing risk-analytics platform delivering sub-second updates on enterprise-scale models.

The End

Monte Carlo Sampling

- Rather than summing or bounding all combinations of failures, *simulate* random draws of **X**.
- Each Monte Carlo iteration:
 - 1 Sample $x_1, x_2, \ldots, x_n \stackrel{\text{i.i.d.}}{\sim} \prod p(x_i)$.
 - 2 Evaluate the Boolean function $F(\mathbf{x})$ (cost is just logical gate evaluation).
 - Collect whether $F(\mathbf{x}) = 1$ (failure) or 0 (success).
- Repeating for many samples $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$ yields a *sample average* estimate of the probability.
- Benefits:
 - Bypasses explicit inclusion-exclusion expansions.
 - Straightforward to parallelize (evaluate each draw in separate threads or blocks).

Estimator for the Expected Value (i.e., Probability)

- A Boolean function $F(\mathbf{x})$ can be viewed as an indicator function: $F(\mathbf{x}) \in \{0, 1\}$.
- The event $\{F(\mathbf{X}) = 1\}$ has probability $\mathbb{E}[F(\mathbf{X})]$.
- Monte Carlo estimator:

$$\widehat{P}_N = \frac{1}{N} \sum_{i=1}^N F(\mathbf{x}^{(i)}),$$

where each $\mathbf{x}^{(i)}$ is a random draw from the input distribution.

■ By the Law of Large Numbers,

$$\lim_{N\to\infty} \widehat{P}_N = \Pr[F(\mathbf{X}) = 1], \text{ almost surely.}$$

■ Error decreases at rate $\mathcal{O}(1/\sqrt{N})$, analyzed via the Central Limit Theorem.

Building a Monte Carlo Estimator for Event Probabilities

Boolean Functions: Basic Concepts

- Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be a vector of n Boolean variables, each $x_i \in \{0, 1\}$.
- A Boolean function is any map $F(\mathbf{x}): \{0,1\}^n \to \{0,1\}$.
- Example: If F encodes "system fails," then $F(\mathbf{x}) = 1$ signifies a failure mode, where \mathbf{x} captures component states.
- Modeling perspective:
 - AND, OR, NOT, k-of-n gates allow composing complex logic.
 - \blacksquare Each F can be evaluated deterministically if we know x.

Building a Monte Carlo Estimator for Event Probabilities

Exact Probability Estimation: Inclusion-Exclusion

- Suppose each x_i has a probability $p_i = \Pr[x_i = 1]$, assuming independence.
- We want $Pr[F(\mathbf{x}) = 1]$, which is

$$\Pr[F(\mathbf{X}) = 1] = \sum_{\mathbf{x} \in \{0,1\}^n} F(\mathbf{x}) \prod_{i=1}^n [p_i^{x_i} (1 - p_i)^{1 - x_i}].$$

■ For sets of events, using the *inclusion-exclusion principle*:

$$\Pr\left(\bigcup_{i=1}^n E_i\right) = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \Pr\left(E_{i_1} \cap \dots \cap E_{i_k}\right).$$

Building a Monte Carlo Estimator for Event Probabilities

Approximation Methods: REA and MCUB

For large n, exact enumeration of subsets is exponential, making it impractical for large Boolean circuits.

■ Rare-Event Approximation (REA):

- Assumes each event has small probability $p_i \ll 1$.
- Overlaps (intersections of multiple failures) are deemed negligible.
- \blacksquare Probability of the union $\approx \sum_{\it i} \Pr[{\it E_i}],$ ignoring higher-order terms.

Building a Monte Carlo Estimator for Event Probabilities

Approximation Methods: REA and MCUB (cont.)

■ Min-Cut Upper Bound (MCUB):

$$\Pr\left[\bigcup_{C \in \{\text{MCS}\}} C\right] \le \sum_{C \in \{\text{MCS}\}} \prod_{b \in C} p_b, \tag{2}$$

- Interprets each minimal cut set (MCS) as a distinct mechanism for failure.
- Sums (over)estimate total failure if MCSs share components.
- Often used as a conservative bound in safety analyses.
- Both methods reduce complexity but can misestimate the true probability when events are not truly rare or heavily intersect.

Building a Monte Carlo Estimator for Event Probabilities

Boolean Derivatives: Definition and Interpretation

■ Boolean Derivative Concept: For a Boolean function $F(\mathbf{x})$ with $\mathbf{x} = (x_1, \dots, x_n)$, the derivative with respect to x_i is defined via XOR:

$$\frac{\partial F}{\partial x_i} = F(x_i = 0, \mathbf{x}_{-i}) \oplus F(x_i = 1, \mathbf{x}_{-i}),$$

where \oplus denotes the exclusive-OR operation, and \mathbf{x}_{-i} are all variables except x_i .

- Interpretation:
 - $\frac{\partial F}{\partial x_i}(\mathbf{x}) = 1$ whenever *flipping* x_i changes the value of F under the specific configuration \mathbf{x}_{-i} .
 - Captures *sensitivity*: if $\frac{\partial F}{\partial x_i}$ rarely equals 1, then F is robust to changes in x_i .

Building a Monte Carlo Estimator for Event Probabilities

Extension to Monte Carlo Estimation of Boolean Derivatives

■ **Key Idea:** Estimate $\mathbb{E}[\partial F/\partial x_i]$ by sampling random configurations $\mathbf{x}^{(s)}$ of the Boolean inputs, then checking how F changes when x_i is flipped.

Sampling Procedure:

- 11 Draw $\mathbf{x}^{(s)} = (x_1^{(s)}, \dots, x_n^{(s)})$ from the distribution of interest.
- **2** Form $\mathbf{x}^{(s)} \oplus \mathbf{e}_i$ by flipping the *i*th coordinate.
- 3 Compute:

$$\frac{\partial F}{\partial x_i}(\mathbf{x}^{(s)}) = F(\mathbf{x}^{(s)}) \oplus F(\mathbf{x}^{(s)} \oplus \mathbf{e}_i).$$

Insight:

- Sensitivity and importance analysis using sampling methods.
- Gradient computation opens a path towards learning-based tasks.

Building a Monte Carlo Estimator for Event Probabilities

Avoiding Inclusion-Exclusion via Monte Carlo

- Exact expansions for large circuits require enumerating all subsets of failing components or gates, which is computationally huge.
- In contrast, *Monte Carlo* draws a sample $\mathbf{x} \in \{0,1\}^n$ and directly evaluates $F(\mathbf{x})$ without enumerating *all* subsets.
- Each run picks a single draw of failed components from the distribution. After many runs, the frequency of F = 1 approximates its probability.
- Results:
 - No exponential blow-up in the number of terms.
 - Straightforward extension to complex gate structures, correlated variables.
 - Parallelizable on modern CPU/GPU architectures.

Building a Monte Carlo Estimator for Event Probabilities

Data-Parallel Implementation using SYCL

Data-Parallel Monte Carlo for Boolean Circuits:

- Simultaneous evaluation of *all* intermediate gates, success, and failure paths.
- Relax coherence constraints arbitrary shapes with NOT gates permitted.
- Vectorized bitwise hardware ops for logical primitives (AND, OR, XOR, etc.)
- Specialized treatment of k/n logic, without expansion.
- Simultaneous use of all available compute GPUs, multicore CPUs.