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Research Story in One Slide

Problem. Exact PRA quantification crumbles beyond a few hundred gates;
industry still waits hours-days for large models.

Idea. Treat the entire PRA—event trees & fault trees—as one probabilistic DAG
and evaluate it via massively-parallel Monte-Carlo.

Enablers. Hardware-native voting gates, a Monte-Carlo-oriented compilation
pipeline, and GPU-resident bit-packed kernels.

B Evidence. Model compression; sub-percent error on ~ 103-event graphs in <5
s on a laptop GPU.

Impact. Opens path to real-time, high-fidelity risk insights and lays
groundwork for dynamic & correlated extensions.
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L Motivation
LThe Bottleneck in Modern PRA

Why Large PRA Models Still Hurt

m Combinatorial Explosion. Minimal cut-set enumeration scales O(2"); full-core
reactor PRA now couples ~10? event trees and 102 fault trees (~ 10° basic
events).

m Reliance on Approximations. Truncation, bounding (min-cut upper bound)
and rare-event heuristics trade rigour for tractability.

m Turn-around Times. State-of-practice tools still report hours to days for full
quantification on commodity CPUs.
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L Motivation
LHardware Opportunity

Data-Parallel Hardware is Waiting

m Consumer GPUs > 10'? integer ops/s at Device Integer Ops/s
< 100 W.
. . . . ) NVIDIA A100 GPU ~ 2 x 10'2
m Dedicated bit-manipulation units (e.g. RTX 3060 Laptop ~ 3% 10!
popcount, VNNI) ideal for Boolean 8-core CPU ~ 8 x 108
evaluat|.or.1. _ Single CPU core ~1x10%
m PRA logic is embarrassingly parallel yet Peak 32-bit integer throughput (vendor
under-utilizes this silicon. specs)

Key Insight

PRA probability estimation is analogous to forward inference in a feed-forward
neural network :: same hardware, different algebra.
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L Introduction

LResearch Agenda

Research Questions

How can all event- and fault-tree dependencies be embedded in a single
probabilistic DAG amenable to high-throughput evaluation?

Which data-parallel Monte-Carlo algorithms best leverage modern GPUs for
Boolean circuits with > 10° nodes?

What compilation and data-structure transformations minimize graph size and
arithmetic intensity without breaking Monte-Carlo unbiasedness?

A How can convergence be certified in real time for probabilities spanning
1070-107%?

What extensions—variance reduction, discrete-event simulation—are needed
for ultra-rare events and time-dependent risk?
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L Introduction

LResearch Agenda

This Dissertation Contributes

12/90

Unified Risk Graph. Formalized PRA models as probabilistic circuits, prove
semantic equivalence.

Hardware-Native Gate Set. Population-count kernels for k-of-n and
cardinality gates :: exponential graph compression.

MC-Oriented Knowledge Compilation. Optimizes PDAGs for throughput.
A Bit-Parallel Monte-Carlo Engine. SYCL kernels achieving massive parallelism.
Rigorous Convergence Criteria. Multiobjective, with formal error bounds.

A Domain Extensions. Common-cause failures, importance measures, and an
importance-sampling prototype for rare events.

Open-Source Release & Benchmarks. Reproducible evaluation on 43 Aralia
models; code under permissive license.
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits

Research Objective 1
Compile PRA Models into Probabilistic Circuits
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits

Objective 1 — Unifying Risk Logic as a Probabilistic DAG

m Map event-tree branching and fault-tree gates into a single probabilistic
directed acyclic graph (PDAG).

m Retain exact Boolean semantics while exposing hardware-native operations
(AND/OR, k-of-n, XOR).

m Provide a substrate for compilation, bit-parallel evaluation, and future dynamic
extensions.
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits
LPRA Overview

The Triplet Definition of Risk

m Define risk as a set of triplets, each representing:

What can go wrong? (S;)
How likely is it to happen? (L))
What are the consequences? (X;)

R = {5, Li, X},

¢ represents completeness in enumerating all relevant scenarios.
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits
LPRA Overview

Scenario S; Modeling in PRA

m Each scenario unfolds from initiating events (IEs), followed by conditional
branching events.

m Fundamental goal: assign probabilities to these scenarios and assess resulting
outcomes (e.g., core damage, large release).

m Implementation typically uses structured diagrams such as:

m Event Trees (ETs): forward chaining from IE to various end states.
m Fault Trees (FTs): top-down decomposition to basic events (component failures).
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LA Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

X Y Z End States

i I } Variable Expression

e X (4B~ (A(B+ )

S ST ® | & % C (DIEY

A & Z kn[(A«C),(DeE),F
:® [(A«C),(D<E),F]

~auion 1ADlE: Unsimplified Boolean expression for

each Top Event

I_I_I ----- ; ,—l ----------- : Small, but non-trivial structure:

' ] |_|_| I_I_l I_I_l m Basic events are shared.
,!_IB 2 I_Ix D GE OO 0CG m Some gate outputs are negated.
| - m Event Zis a (k=2) of n=3 gate.
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits

LA Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

Compile a Directed Acylic Graph (DAG) from Logic Model

Compile once, evaluate
millions of times:

m Layered topological
order for memory
coalescing.

m Preserve k-of-n gates to
avoid exponential
blow-up.

m Replace linear scans
with hash-indexed
containers.
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits

LA Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

OOOOS = frm

Refinements:
m Partition into layers.
m Vectorize for SIMD by fusing similar ops.
m Feed-forward only: improves caching.

Still not probabilistic: inputs, outputs are bitpacked INT64 tensors.
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits

LKnowledge Compilation and Queries

Querying the Compiled Knowledge Graph
OO = fu

The Simplest Type of Query: Eval(G)
m Set the inputs [on/off].
m Observe the outputs [on/off].

Can be used as a building block for an embedding ML model.

But just how fast is this?
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LResearch Objective 1: From PRA Logic to Probabilistic Circuits

LKnowledge Compilation and Queries

From Logic to High-Throughput Evaluation

Next: How do we process millions of scenarios per second?

Hardware-native kernels :: Research Objective 2
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Research Objective 2
Develop data-parallel methods for evaluating Boolean circuits
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LBitwise Kernels

Boolean Truth Table - Single Bit

X | Y | AND | OR | XOR | NAND | NOR | XNOR
00 0 [0 O 1 1 1
0|1 o | 1] 1 1 0 0
10 0 | 1] 1 1 0 0
101 1 | 1] 0 0 0 1

m Classical gate evaluation operates bit-by-bit. Throughput o« number of Boolean
operations.
m Perform 64 of these truth-table lookups in one machine instruction.
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LBitwise Kernels

Extending to a 64-Bit Word

. . . . N
m Pack 64 independent Bernoulli trials into “f‘ !E!.'f".
3 5% AR
one byte. ‘! ’ it;ﬁ:!{!
_ L . »li 9, NN
m Bitwise primitives act independently on l‘ : ~~:=EE
. oy g .
every bit position. P
L . 0::2:::2:2::;3
m Hardware native instructions guarantee G2
ns latency.
XorY
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LBitwise Kernels

What is a k-of-n (Voting) Gate?

m Outputs 1 iff at least k of n inputs are 1 (majority /
threshold logic).

m Classic PRA models expand this gate into basic
@ AND/OR primitives -> leads to combinatorial blow-up.

Example: k=3,n=5
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LBitwise Kernels

Naive Expansion => Combinatorial Explosion

m Expansion = OR of every
subset with k, ..., n true
inputs. .

mForn=5k=3 (3) =10 i i o oo s & N &
conjunction clauses =>
26 total gates after
binary-tree lowering.

m Complexity becomes
O(2"/+/n) atk ~ n/2.

3-of-5 gate expanded to AND/OR Sum-of-Products
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LBitwise Kernels

Hardware-Native Voting Gate (No Expansion)

m Preserve the gate as one vertex; kernel | |
does bit-parallel population count.

A B D E
m Complexity O(n) integer ops; counter
width < 8 bits for PRA fan-ins (256 " N | |
inputs). = | |
m Graph shrinks from ©(2"/4/n) to 1. Huge | I
memory launch savings. 1
i | | =
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LThe SYCL Execution Model

SYCL Execution Model in a Nutshell

work-group of [ FFFFF 7=
(444) work-items . AAAAA A F S

dimension 1
of ND-range

Aension 0
of ND-range

>
dimension 2
of ND-range

ND-Range
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sub-group of
4 work-items
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of work-group
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/ dimension 2
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits
LThe SYCL Execution Model

SYCL Execution Model in a Nutshell

Host

ND-Range
Work-Group

Sub-Group

Device USM
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submits
queue.submit () with a
kernel_name.

( global 3 xlocal )
defines grid.

maps to CUDA block
OpenCL work-group.

(warp/wavefront) gives
warp-level shuffle &
ballot ops.

used for persistent
bit-packed buffers.

k-group of
(44,4) work-items

dimension 1
of ND-range

-
dimension 2
of ND-range

ND-Range

ﬁ:\ensmn 0
of ND-range

sub-group of
4 work-items

dimension 1
of work-group
»/'dimension 0

of work-group

PE—
dimension 2
of work-group

Work-group

LT
—
dimension 2
of sub-group

Sub-group

Work-item
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LKernel Execution

Mapping PDAG Layers to SYCL Kernels

Topological sort = depth index d.
All nodes with depth d share identical fan-in length. range<3> := (batch, gate, bitpack).

One kernel per layer; gate type dispatched via template specialization.
Streams results to next-depth buffer in global memory.

Fused | X
Kernel | iNegation

k-group sub-group of
(4:44) work-items 4work-items

dimenion g O
dimension 1 of work-group —
4 dimension 2
dimension 0 of sub-group

of ND-range
dimension2  Of work-group
dimension 0 of work-group
P S % ofNDrange
dimension 2
of ND-range
ND-Range Work-group Sub-group Work-item

Layer 4 Layer 5

Layer3

Layer 1 Layer2
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LKernel Execution

Eval Query Performance on Generic Backends

= ! I
© Intel i7-10700 CPU - 8 cores @ 3.70GHz
Intel UHD Graphics 630 - 24 cores @ 1200MHz
NVIDIA GeForce GTX 1660 SUPER - 1408 cores @ 1800MHz
100K |~ -
@
1)
°
<]
Z 10K - -
Q
<
a
a
6
g
8
E 1K
= °
z
“
300 &
100 - e ¢ g 4
30
I I I ! Ll
1kbit/s 10kbit/s 100kbit/s 1Mbit/s 10Mbit/s 100Mbit/s

Throughput (bit/s)
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LKernel Execution

100Mbivs
2 10mbivs
3 « Intel Core i7-10700
5 Intel(R) UHD Graphics 630
g NVIDIA GeForce GTX 1660 SUPER
&
g
£ 1Mbivs
E
o Y & & < &
& & & . © +©
Gate Type
0 Device: Intel Core I7-10700 . Dovice: Intel(R) UHD Graphics 630 0 Dovice: NVIDIA GeForce GTX 1660 SUPER
8 80 ®
£ w0 £ w £ w
HE) fo £
& ) g o
3 3 3
F) T 1 | 30 | 1 1 | 30
g g g
g g )
0 & 20
100 - 100 - 100 -
s O & & e S © & & ’y e © & & &
S & E S &S S S LSS

Figure: (Top) Throughput in bit/second on various backends for different gate types.
(Bottom) % Relative speedup/slowdown as compared to the AND gate.
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LResearch Objective 2: Develop data-parallel methods for evaluating Boolean circuits

LKernel Execution

Eval Query Performance on Discrete GPUs

r T T
kb Allocated Memory [oits]] |

m Latency: 20-30 ms per layer.

m Throughput: Graph depth and VRAM bound
(see plot).

m Benchmarked on Nvidia GTX 1660 [6GB].
m Graph sizes: from = 50 to = 2000 nodes. I Y
m Evals: from 16M to 1B per node per pass.

100

Q: Are these enough samples to estimate the
Expectation Query?

L . |
10M 100M 18
Bits per node (millions)
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LResearch Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Research Objective 3

Develop data-parallel Monte-Carlo methods for estimating probabilities on
unified PDAGs
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L Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Bridging Boolean Evaluation and Probabilistic Inference

34/90

m Previous objective delivered bit-parallel gate kernels that evaluate a PDAG layer
in O(1) machine words.
m To quantify risk, we must attach probability distributions to the PDAG leaves
and propagate forward.
m Strategy: embed a Monte-Carlo engine that
draws bit-packed Bernoulli samples for all basic events, and
reuses the same gate kernels to evaluate each random draw.
m One kernel pipeline therefore suffices for both deterministic logic and
stochastic sampling.
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L Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

LBack to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

Output Layer

Input Layer
(Probabilistic) (Probabilistic)
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L Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

LBack to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States
End-to-End Sampling Pipeline (one iteration)
@@ @ R | Pegtion

Fr()

P(A)

) Basic-Event Kernel: generate random draws.

P(C) Gate Kernels: evaluate PDAG layers using
hardware-native logic primitives.

P(D) Tally Kernel: count number of ones, update
counters, compute estimates.

P(E)

P(F)
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L Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

LMC Sampling Theory

Monte-Carlo Sampling over PDAGs

Draw x() ~ ], Bernoulli(py) in bit-packed form.
Evaluate the Boolean function F: {0,1}/81 — {0, 1} (root node) using the gate kernels.
Record Y =F(x() (failure indicator).

After N iterations

Pn(1—Py)

N
~ 1 . ~
— § : ( —
PN - N - Y I), SE(PN) = N

Error shrinks as O(N~1/2); variance-reduction extensions discussed shortly.
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L Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

LMC Sampling Theory

Basic-Event Sampling Kernel

m Each basic event b € B is modelled as an independent Bernoulli
random variable X, ~ Bernoulli(pp).

m Asingle Monte-Carlo iteration packs w = 8sizeof(bitpack_t) = 64
independent trials into one machine word.
m For batch index b, bit-pack p, lane X: X, , » ~ Bernoulli(p,).

B The basic-event kernel uses the counter-based Philox-4x32-10
PRNG; counters are derived from (b, p, A, t), guaranteeing
reproducibility and inter-thread independence.

m After one iteration (N = BPw trials) the sufficient statistics per

basic eventares, = X1, o = Sp/N, P(A) = 0.25; p(A) = (17/64) = 0.6525
P

SE(Ps) = v/Ps(1 — Ps)/N.
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L MC Sampling Theory

Tally Kernel

m For a designated node v (e.g. system top event) define Ylff; = FV(X‘(,?,,A) € {0,1}.
m Tally kernel executes a single SIMD popcount per bit-pack to obtain the per-iteration count

231
P
m Cumulative statistics after T iterations (Ny = TN trials):

! ~ S
=Y 59, B=3
t=1 NT

m Unbiased variance estimator

m Central Limit Theorem. As T —

39/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

L Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

LMC Sampling Theory

When "More Samples” is Wasteful

m Fixed iteration budgets (N
large and hard-wired) risk
massive oversampling when
P, is moderate (=~ 10~%-1071).

[ —
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LResearch Objective 4: Convergence Guarantees

Research Objective 4
Develop Robust Convergence Criteria
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L Research Objective 4: Convergence Guarantees

Criterion 1: Frequentist Half-Width (Wald)

Let {Y®}¥ | be i.i.d. Bernoulli trials with P = Pr[Y = 1]. The estimator Py = L 3=, Y obeys the CLT:

VN (Py—P) % N(0,P(1—P)).

A (1 — «) two-sided Wald interval is therefore

Py + 21 oo V L(l,\,_ﬁm-
Stopping rule

Half-width: h"(z) = z\/Px(1 — Py)/N. Declare convergence when A /Py < ere.

ShrinksAa relative confidence band around the estimate; fast for moderate P, slow for rare events
where Py < 1074,
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L Research Objective 4: Convergence Guarantees

Criterion 2: Bayesian Credible Interval (Jeffreys prior)

Prior p ~ Beta(%, 1) is invariant under re-parameterization. After s successes and f failures the
posterior is
p|data ~ Beta(s+3,f+3).

The central (1 — «) credible interval [g¢, g1 —¢] with t = «/2 has

Stopping rule

half-width h%¥** = (q,_¢ — q¢)/2. Convergence when h2® /Py < ¢/,

Integrates parameter uncertainty; maintains correct coverage even when Py is based on only a
handful of observed failures (rare-event tails).
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L Research Objective 4: Convergence Guarantees

Criterion 3: Information-Theoretic Gain

Posterior entropy of Beta(«, 3) is

H(a, B) = nB(ev, B) = (a = )¢p(a) = (B = 1)p(B) + (a + = 2)9(a + f).
After a batch (As, Af) the information gain is
/batch = H(Oé, 5) - H(O[ + AS? ﬂ + Af)

Stopping rule

Stop when lpaech < Iin bits (default 10=4).

Scale-free; halts when each new batch conveys negligible Shannon information, preventing
oversampling when P is either very small or very large.
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L Research Objective 4: Convergence Guarantees
LOn»the-FI Updates
y Up

Composite Convergence Criteria

Step-1: Statistical precision per node v

v _ GING (v)
Nreq = max(Név), Nlogv NBayes’ Ninfo)

where

NO) ’722 ﬁv(l—ﬁv)" 7

¢ (arelﬁv)2

V) ._ [_220-P)
Nlog T {(slog In 10)2@1’
Ng;)yes := Eq. (Jeffreys),

NY) = [(2n2) L]

info " min
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L Research Objective 4: Convergence Guarantees

LOn»the-FIy Updates

Composite Stopping Rule

Step-2: Global precision budget
Nreq = r&a&( Ngé.
Step-3: Translate to iteration budget

T.= [%] N = BPw.

Step-4: External user limits

Tmax (iteration cap),  7max (Wall-clock cap).

Stopping time

T =min{ 7., Tmax, T+}, T. =min{t: 7(t) > Tmax}-

46/90

m Statistical criteria guarantee precision.
T. dominates when resources are
ample.

m Rule is conservative: run halts as soon
as any limit is met.
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L Research Objective 4: Convergence Guarantees

LOn»the-FIy Updates

On-the-Fly Diagnostics & Accuracy Metrics

Additional diagnostics when true P is known (for debugging).

Metric Formula
Absolute error Ay = \ﬁv — Py
Relative error ov = Av/Py

Mean-squared error  MSE, = (,3., —P,)?

Linear half-width A" = zy/Py(1 — B,)/N

Log half-width hles = 29V
P,1In10
Bayesian half-width ~ h5®® = w
Information gain Ibatch = H(a, B) — H(a + As, B+ Af)
z-score = PV: Py
UV 2 2
x> goodness-of-fit x:=© ;fl) + (OOEOEC’)

47/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

LResearch Objective 5: Case Studies and Benchmarks

Research Objective 5
Case Studies and Benchmarks
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L Research Objective 5: Case Studies and Benchmarks

LAralia Fault Tree Data Set

Overview: Aralia Dataset

m Dataset Composition: The Aralia collection consists of 43 distinct fault trees,
each with varying numbers of basic events (BEs), gate types (AND, OR, K/N,
XOR), and minimal cut-set counts.

m Diverse Problem Sizes: Small trees (e.g. 25-32 BEs) through large models
with over 1,500 BEs.

m Wide Probability Range: Top-event probabilities spanning from rare events
near 10~13 to fairly likely failures with probability above 0.7.

m Model Variability: Some trees are primarily AND/OR, others incorporate
more advanced gates (K/N, XOR, NOT), providing thorough coverage of typical
(and atypical) fault tree logic structures.
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LResearch Objective 5: Case Studies and Benchmarks

LAralia Fault Tree Data Set

Logic Gates

# Fault Basic Minimal Top Event

Tree Events Total AND K/N XOR NOT Cut Sets Probability
1 baobab1 61 84 16 9 - - 46,188 1.01708E-04
2 baobab2 32 40 5 6 - - 4,805  7.13018E-04
3 baobab3 80 107 46 - - - 24,386 2.24117E-03
4 cea9d601 186 201 69 8 - 30 130,281,976 1.48409E-03
5 chinese 25 36 13 - - - 392 1.17058E-03
6 das9201 122 82 19 - - - 14,217 1.34237E-02
7 das9202 49 36 10 - - - 27,778 1.01154E-02
8 das9203 51 30 1 - - - 16,200 1.34880E-03
9 das9204 53 30 12 - - - 16,704 6.07651E-08
10 das9205 51 20 2 - - - 17,280 1.38408E-08
1 das9206 121 112 21 - - - 19,518 2.29687E-01
12 das9207 276 324 59 - - - 25,988 3.46696E-01
13 das9208 103 145 33 - - - 8,060 1.30179E-02
14 das9209 109 73 18 - - - 8.20E+10 1.05800E-13
15 das9601 122 288 60 36 12 14 4,259 4.23440E-03
16  das9701 267 2,226 1,739 - - 992 26,299,506  7.44694E-02
17 edf9201 183 132 12 - - - 579,720 3.24591E-01
18 edf9202 458 435 45 - - - 130,112 7.81302E-01
19  edf9203 362 475 117 - - - 20,807,446  5.99589E-01
20  edf9204 323 375 106 - - - 32,580,630  5.25374E-01
21 edf9205 165 142 30 - - - 21,308  2.09351E-01
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LResearch Objective 5: Case Studies and Benchmarks

LAralia Fault Tree Data Set

22 edf9206 240 362 126 - - - 385,825,320 8.61500E-12
23 edfpal4db 311 290 70 - - - 105,955,422 2.95620E-01
24 edfpaldo 311 173 42 - - - 105,927,244  2.97057E-01
25 edfpaldp 124 101 42 - - - 415,500 8.07059E-02
26 edfpal4q 311 194 55 - - - 105,950,670 2.95905E-01
27 edfpal4r 106 132 55 - - - 380,412 2.09977E-02
28 edfpal5b 283 249 61 - - - 2,910,473 3.62737E-01
29 edfpal50 283 138 33 - - - 2,906,753 3.62956E-01
30 edfpal5p 276 324 33 - - - 27,870 7.36302E-02
31 edfpalsq 283 158 45 - - - 2,910,473 3.62737E-01
32 edfpalsr 88 110 45 - - - 26,549 1.89750E-02
33 elf9601 145 242 97 - - - 151,348 9.66291E-02
34  ftr10 175 94 26 - - - 305 4.48677E-01
35 isp9601 143 104 25 1 - - 276,785 5.71245E-02
36 isp9602 116 122 26 - - - 5,197,647 1.72447E-02
37 isp9603 91 95 37 - - - 3,434  3.23326E-03
38 isp9604 215 132 38 - - - 746,574 1.42751E-01
39 isp9605 32 40 8 6 - - 5,630 1.37171E-05
40 isp9606 89 41 14 - - - 1,776 5.43174E-02
41 isp9607 74 65 23 - - - 150,436 9.49510E-07
42 jbd9o601 533 315 71 - - - 150,436 7.55091E-01
43 nus9601 1,567 1,622 392 47 - - unknown unknown
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L Research Objective 5: Case Studies and Benchmarks

LBenchmarking Procedure

Benchmarking Setup: Hardware and Environment

m Target Hardware:
m GPU: NVIDIA® GeForce GTX 1660 SUPER (6 GB GDDR®, 1,408 CUDA cores).
m CPU: Intel® Core™ i7-10700 (2.90 GHz, turbo-boost, hyperthreading).

m Software Stack:
m SYCL-based (AdaptiveCpp/HipSYCL), with LLVM-IR JIT for kernel compilation.
m Compiler optimization at -03 for efficient code generation.
m Repeated runs (5+) to mitigate transient variations.

m Measured Time: Includes entire wall-clock duration, from host-device

transfers and JIT compilation to final result collection.
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LAccuracy Benchmarks
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LResearch Objective 5: Case Studies and Benchmarks

LAccuracy vs. Time to Convergence
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L Research Objective 5: Case Studies and Benchmarks

L Convergence Runs
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L Research Objective 5: Case Studies and Benchmarks
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LConvergence Runs, Comparison with MCUB, REA
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LResearch Objective 5: Case Studies and Benchmarks

LConvergence Run - Rare Event, Comparison with MCUB

Set 0119 - p060T.ami
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LResearch Objective 5: Case Studies and Benchmarks

LConvergence Free Run

10° Set set 19 - nus9601.xm!

Probabilty estimate

58/90 ° ‘ i B idn



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

LResearch Objective 5: Case Studies and Benchmarks

LAralia Fault Tree Data Set - Convergence for Rare Events

Mean Absolute Error - log(P) .
Fault Runtime

Tree REA MCuUB Monte Carlo [sec]

#*

x 108 0.262
x 108 0.209
x 108 0.259
x 108 0.262
x 108 0.277
x 108 0.279
x 108 0.295
x 108 0.292
x 108 0.292
x 10° 0.958
x 108 0.269
x 107 0.282
x 108 0.307

45156x10~ % 7.61880x10 3
.34705%x10~ %  1.54436x10 3
.16701x10~2 2.24843x10~%
.32207x1072  2.41802x103
.06354x10~2 2.14601x103
.22765x10~ ! 5.49963x10°
57596x10° 1.20232x10 %
.55935%x1072 2.31768x10 %
9 das9204 1.68086x10~ 1 1.68087x10~ ' 1.13495x10~!
10 das9205 9.63825x10~2 9.63725x1072 2.76190x10 2

baobab1 1.45156x10~% 1
6
1
9
1
1
2
3
1
9
11 das9206 5.43561x102 8.89660x10~% 3.51548x10 %
2
3
1
5
3
5
6
1

baobab2 6.486 28X 103
baobab3 1.21509x10~2
cea9601 9.36195x10~ 2
chinese 1.08742x10~2
das9201 1.26649x10~ 1
das9202 7.72743%x10°
das9203 3.590 19x 102

cONOUA WN=

12 das9207 1.18486x10~ 1 2.45492x10~2 1.36519x10~%
13 das9208 4.12808x10~2 3.81968x10~2 9.34017x10°
14 das9209 2.11242x10~2 1.70245x 10"
15 das9601 5.29285x1072 5.19122x10 2
16 das9701 5.02804x10~2 3.37565x10 2
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LResearch Objective 6: Domain Specific Extensions

Research Objective 6
Develop Importance Measures, Extend Common-Cause-Failure Analysis

60/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits
LResearch Objective 6: Domain Specific Extensions

LCompute On-the-Fly Importance Measures

Why Compute Importance Measures?

m PRA stakeholders ask: “Which components matter most?”

m Classical sensitivity indices (Birnbaum, Fussell-Vesely, RAW, RRW) quantify the
change in top-event probability when basic-event reliabilities shift.

m Goal: embed these metrics inside the MC engine — no extra cut-set
enumeration, no separate gate passes.
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LCompute On-the-Fly Importance Measures

Classical Definitions (per basic event /)

Measure Analytical Definition

Birnbaum (MIF) ~ MIF; = 85;)"_

Critical (CIF) CIF, = MIF, P’zp

Diagnostic (DIF) DIF; = PriXi = -1P/\ Z=1}

RAW / RRW Risk achievemgﬁtt(}preduction worth — counterfactual probabilities when X; forced
tolor0

Key insight: All measures reduce to combinations of three sample proportions:

So,i

Si ~ So —~
n ) pO,I - n .

ﬁi:ﬁ’ Po =
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LCompute On-the-Fly Importance Measures

MC Estimation with Minimal Sufficient Statistics

Per-iteration tallies
Sj<—S;i + popcount(X;), So<So + popcount(Z), g ;<Sp; + popcount(X; & Z).

Only one extra bitwise AND + popcount per basic event.
Estimator example (Birnbaum):

NiiE, — Poi —PoPi.
pi(1 —p;i)
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LCompute On-the-Fly Importance Measures

MC Estimation with Minimal Sufficient Statistics

Convergence Guarantee

Each counter is a sum of n = TN independent Bernoulli trials:

Vn(p-p) L N, p(1-p)).

By the delta method the importance estimators inherit ©(n—'/2) variance.

Same composite stopping rule (half-width, credible interval, info-gain) thus applies
without modification.
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LCommon-Cause Failure (CCF) in Monte-Carlo

Motivation: Common-Cause Failures

m Independent failure assumption breaks down when components share hidden
dependencies (environment, manufacturing defects, etc.).

m Neglecting CCFs can under-predict top-event probability by orders of
magnitude.

m Goal: incorporate parametric CCF models without disrupting the bit-parallel
Monte-Carlo pipeline.
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LCommon-Cause Failure (CCF) in Monte-Carlo

Graph Construction for a CCF Group C

Scale independent leaves. Each basic event ¢; € C keeps an independent probability
(1 - )‘ccf) Pe;-
Insert CCF trigger variable Sc with failure probability Acr = 374~ 5 mc k-

B N

CCF-root gate Gc = Sc V ¢1 V -+ V ¢ routes either independent or common shock to the rest of
the graph.

B

(Optional) Multiplicity shadow gates Hfj“ realize models that distinguish the number k of
simultaneously failed components.

Key property

All new nodes are gates; the set of basic events is unchanged, so the Monte-Carlo sampling kernel
remains untouched.
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LResearch Objective 6: Domain Specific Extensions

LCommon-Cause Failure (CCF) in Monte-Carlo

MC Treatment and Convergence Guarantees

Sampling logic ' '
m Leaves {S¢,c1,...,Cn} are sampled Liibiasednesspvanance
independently. Correlation enters Indicator Z of any top-level node is still a
only via logic connectivity. Bernoulli random variable.

m Same bit-packing kernel, same PRNG

Var[Z] =P(1—P), P=Pi[Z=1].
counters - zero performance

overhead. Therefore all proofs for half-width,

m Trigger variable firing forces Bayesian interval, and information-gain
simultaneous bits in the shadow criteria remain valid unchanged. CCF
gate; implemented by one extra OR  merely shifts P.
reduction.

Take-away: CCF groups integrate into MC with zero sampler modification;
ezokonvergence diagnostics from Research Objective 4 apply verbatim.
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LResearch Objective 6: Domain Specific Extensions

LKnowledge Compilation for Monte-Carlo

Hierarchy of compiled target languages. Blue nodes represent canonical forms.

Acronym Full form

NNF Negation Normal Form
XAG XOR-And-Inverter Graph
. AlG And-Inverter Graph
! ANF/RNF Algebraic/Ring Normal Form
f-NNF Flat Negation Normal Form
‘ DNNF Decomposable Negation Normal Form
S d-NNF Deterministic Negation Normal Form
FPRM Fixed Polarity Reed-Muller
R [FPRM] CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
5 [PPRM s-DNNF Smooth/Structured Decomposable Negation No
d-DNNF Deterministic Decomposable Negation Normal |
6 sd-DNNF Smooth/Structured Deterministic Decomposabls
PPRM Positive Polarity Reed-Muller
7 sd-DNNF Pl Prime Implicate
P Prime Implicant
g BCF Blake Canonical Form
EPI Essential Prime Implicate
o EIP Essential Prime Implicant
BDD Binary Decision Diagram
° SbD f-BDD Free/Read-Once Binary Decision Diagram
OBDD Ordered Binary Decision Diagram
SDD Sentential Decision Diagram
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LResearch Objective 6: Domain Specific Extensions

LKnowledge Compilation for Monte-Carlo

Two Very Different Compilation Objectives

Exact-Inference KC

m Goal: produce a tractable normal
form where queries such as model
counting, SAT, or entropy can be
answered in O(|G|).

m Constraints: decomposability,
determinism, smoothness =
DNNF, SDD, ROBDD, etc.

m Trade-off: often expands the graph
(CNF— OBDD may grow
exponentially).

69/90

Monte-Carlo KC

m Goal: maximize throughput of
bit-parallel sampling while keeping the
estimator unbiased.

m Constraints: none beyond logical
equivalence;
decomposability/determinism not
required.

m Opportunity: aggressively compress
the PDAG, collapse voting sub-trees,
and flatten deep gate stacks to
minimise kernel launches.
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LKnowledge Compilation for Monte-Carlo

Enter: Naive MC-Specific KC Pipeline (Levels 0 ... 8)

LO Baseline - parse PDAG; keep k-of-n and XOR unexpanded.

L1 Null/Negation - eliminate vacuous gates, absorb single negations.

L2 Definition Coalescing - merge replicas, detect modules.

L3 Boolean Optimization - distributivity detection, Shannon expansion.

L4-L5 - condensed passes that, in exact KC, would be repeated; here executed once until
fixed-point.

L6 Specialization - map VOT(k/n) to hardware-native gate instead of DNF explosion.

L7 Negation Pushdown - only when it reduces bitwise polarity ops.

L8 Final Coalescing - stop when further compression <1

Median gate count shrinks by 1.3x; worst-case fan-in compression up to 2"/+/n. Compile wall-time
drops 186x compared to recursive normalizer.

BN
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LKnowledge Compilation for Monte-Carlo

Why “Relaxed” KC Works for MC

m Throughput: fewer gates = fewer kernel launches and lower memory traffic.
MC cost is O(|G|) per iteration: shrink |G| = linear speed-up.

m Estimator Unbiasedness: every transformation is a logical equivalence;
Monte-Carlo estimator P remains unbiased (E[P] = P).

m Variance: graph compression leaves Bernoulli variance P(1 — P) unchanged;
half-width formulas from Research Objective 4 stay valid.
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LKnowledge Compilation for Monte-Carlo

Compression Microbenchmark
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LResearch Objective 6: Domain Specific Extensions

LKnowledge Compilation for Monte-Carlo

Compression Microbenchmark
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leportance Sampling for Ultra-Rare Events

Why Importance Sampling?

m Plain MC requires O(P~*(1 — P)) trials to observe even a single failure when
P < 1075, Wall-time grows to hours.

m Importance Sampling (IS) biases the basic-event probabilities to force rare
scenarios to occur more frequently, then re-weights samples to remain
unbiased.

m Objective: integrate IS into the existing bit-parallel kernel with minimal
memory and arithmetic overhead.
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LResearch Objective 6: Domain Specific Extensions

leportance Sampling for Ultra-Rare Events

Self-Normalized Importance Sampling (per trial)
Biasing rule

qi =clip(cpj, &, 1=¢), > 1 Implementation Hooks

Draw X* ~ Bern(q;) independently. Likelihood ratio

for one component: m Store g; and two 32-bit
pre-computed ratios p;/q;,
X pl ( —pi )1*)(/‘* (1=pi)/(1=qp).
4xr) = q).( (1— g% ’ m Extra multiplication per basic event
! to accumulate log L; fused into
Trial weight L = [T, 4(X;"). existing sampling loop.
Point estimator m One additional reduction per batch

for XL and XLZ.
B Sy L0206 Z(k)
Is =

S L

(self-normalized).
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leportance Sampling for Ultra-Rare Events

Variance Reduction and Stopping Rule

m Classical MC variance: ogc = P(1 — P)/N.
m IS variance: .
o = N (Eq[LQZ] - P2) < owc if bias factor ¢ well chosen.
m For tilt factor ¢ = 10® and P = 10~8, empirical runs show 100-200x variance reduction.

m Convergence guarantee—because P is still a sample mean of i.i.d. weighted Bernoullis, the
CLT and all three statistical half-width criteria from Research Objective 4 apply unchanged with
8|S.

Practical Tip

Auto-tune c via pilot runs that seek weight coefficient of variation CV =~ 1; implemented as a future
work item.
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Limitations & Future Work
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L Limitations & Future Work

Where the Framework Still Falls Short

m Ultra-rare probabilities (P < 10~8) require a mature importance sampling
engine.

m Hardware dependence: peak throughput assumes wide SIMD + high
memory bandwidth; CPU-only runtimes are ~100x% slower.

m Static logic only: time-dependent repair, mission phases, or feedback loops
not yet supported.

m Limited dependence models: beyond CCF, no general copula or
Bayesian-network sampling engine.

m Manual kernel tuning: batch/bitpack geometry must be tuned per device
family; no auto-tuner.

m Validation scope: full-scale industry PRA (e.g. Generic PWR) not yet replicated
end-to-end.
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Future Work Roadmap
Near-Term (1 yr)

m Adaptive variance-reduction Mid-Term (3 yr)
palette: stratified, antithetic, m Discrete-event simulation back-end for
multi-level MC. mission-time and repair modeling.

m GPU-resident auto-tuner for kernel m Copula / Bayesian-network engine for
geometry and memory layout. correlated uncertainties.

m Weighted variance estimator + m Gradient-based calibration via Boolean
half-width for importance auto-diff + SGD.
sampling. m Streaming mode for real-time risk

m Extended benchmark suite (Aralia dashboards.

+ Generic PWR).

Ultimate vision: a portable, self-optimizing risk-analytics platform delivering

7019 sub-second updates on enterprise-scale models.
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LLimitations & Future Work

The End
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Monte Carlo Sampling

m Rather than summing or bounding all combinations of failures, simulate
random draws of X.
m Each Monte Carlo iteration:
Sample X1, X2, ..., Xp Hd. [Tp(x).
Evaluate the Boolean function F(x) (cost is just logical gate evaluation).
Collect whether F(x) = 1 (failure) or 0 (success).
m Repeating for many samples {x(1), ... x(")} yields a sample average estimate of
the probability.
m Benefits:

m Bypasses explicit inclusion-exclusion expansions.
m Straightforward to parallelize (evaluate each draw in separate threads or blocks).
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L Limitations & Future Work

Estimator for the Expected Value (i.e., Probability)

82/90

m A Boolean function F(x) can be viewed as an indicator function: F(x) € {0,1}.
m The event {F(X) = 1} has probability E[F(X)].

m Monte Carlo estimator: N

Pu = > F?),

i=1
where each x) is a random draw from the input distribution.
m By the Law of Large Numbers,

lim Py = Pr[F(X) =1], almostsurely.

N—oo

m Error decreases at rate O(1/+v/N), analyzed via the Central Limit Theorem.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Boolean Functions: Basic Concepts

B Letx = (x1,X2,...,Xy) be a vector of n Boolean variables, each x; € {0,1}.

m A Boolean function is any map F(x) : {0,1}" — {0,1}.

m Example: If F encodes “system fails,” then F(x) = 1 signifies a failure mode,
where x captures component states.

m Modeling perspective:

m AND, OR, NOT, k-of-n gates allow composing complex logic.
m Each F can be evaluated deterministically if we know x.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Exact Probability Estimation: Inclusion-Exclusion

m Suppose each x; has a probability p; = Pr[x; = 1], assuming independence.
m We want Pr[F(x) = 1], which is

n

PriF(X)=1] = > Fx) ][]0 -p)"].

xe{0,1}" i=1

m For sets of events, using the inclusion-exclusion principle:

PI‘(LnJl E,) = Zn: (—1)k+1 Z PI‘(E,'1 n---N E/k)'

k=1 1<ii<---<ig<n
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LBuilding a Monte Carlo Estimator for Event Probabilities

Approximation Methods: REA and MCUB

For large n, exact enumeration of subsets is exponential, making it impractical for
large Boolean circuits.

m Rare-Event Approximation (REA):

m Assumes each event has small probability p; < 1.
m Overlaps (intersections of multiple failures) are deemed negligible.
m Probability of the union ~ 3, Pr[E;], ignoring higher-order terms.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Approximation Methods: REA and MCUB (cont.)

m Min-Cut Upper Bound (MCUB):

U < X IIes 2)

Ce{MCS} Ce{MCS} beC

m Interprets each minimal cut set (MCS) as a distinct mechanism for failure.
m Sums (over)estimate total failure if MCSs share components.
m Often used as a conservative bound in safety analyses.

m Both methods reduce complexity but can misestimate the true probability
when events are not truly rare or heavily intersect.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Boolean Derivatives: Definition and Interpretation

m Boolean Derivative Concept: For a Boolean function F(x) with x = (x1,...,Xn),
the derivative with respect to x; is defined via XOR:

oF
8X,'

where @ denotes the exclusive-OR operation, and x_; are all variables except x;.
m Interpretation:
] g—;(x) = 1 whenever flipping x; changes the value of F under the specific

configuration x_;.
m Captures sensitivity: if g’—; rarely equals 1, then F is robust to changes in x;.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Extension to Monte Carlo Estimation of Boolean Derivatives

m Key ldea: Estimate E[0F/dx;] by sampling random configurations x(*) of the
Boolean inputs, then checking how F changes when x; is flipped.

m Sampling Procedure:

Draw x®) = ( . ,x,(f)) from the distribution of interest.
Form x) @ e; by flipping the ith coordinate.
Compute:

oF

5 () = FxY) @ Fx& @ e).
]

m Insight:

m Sensitivity and importance analysis using sampling methods.
m Gradient computation opens a path towards learning-based tasks.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Avoiding Inclusion-Exclusion via Monte Carlo

m Exact expansions for large circuits require enumerating all subsets of failing
components or gates, which is computationally huge.

m In contrast, Monte Carlo draws a sample x € {0,1}" and directly evaluates F(x)
without enumerating all subsets.

m Each run picks a single draw of failed components from the distribution. After
many runs, the frequency of F = 1 approximates its probability.

m Results:

m No exponential blow-up in the number of terms.
m Straightforward extension to complex gate structures, correlated variables.
m Parallelizable on modern CPU/GPU architectures.
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LBuilding a Monte Carlo Estimator for Event Probabilities

Data-Parallel Implementation using SYCL

Data-Parallel Monte Carlo for Boolean Circuits:

90/90

m Simultaneous evaluation of all intermediate gates, success, and failure paths.
m Relax coherence constraints - arbitrary shapes with NOT gates permitted.

m Vectorized bitwise hardware ops for logical primitives (AND, OR, XOR, etc.)

m Specialized treatment of k/n logic, without expansion.

m Simultaneous use of all available compute - GPUs, multicore CPUs.
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