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Research Story in One Slide

1 Problem. Exact PRA quantification crumbles beyond a few hundred gates;
industry still waits hours–days for large models.

2 Idea. Treat the entire PRA—event trees & fault trees—as one probabilistic DAG
and evaluate it via massively–parallel Monte-Carlo.

3 Enablers. Hardware-native voting gates, a Monte-Carlo–oriented compilation
pipeline, and GPU-resident bit-packed kernels.

4 Evidence. Model compression; sub-percent error on ⇠ 103-event graphs in <5
s on a laptop GPU.

5 Impact. Opens path to real-time, high-fidelity risk insights and lays
groundwork for dynamic & correlated extensions.
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Motivation

The Bottleneck in Modern PRA

Why Large PRA Models Still Hurt

Combinatorial Explosion. Minimal cut-set enumeration scales O(2n); full-core
reactor PRA now couples ~ 102 event trees and 103 fault trees (⇡ 105 basic
events).
Reliance on Approximations. Truncation, bounding (min–cut upper bound)
and rare–event heuristics trade rigour for tractability.
Turn-around Times. State-of-practice tools still report hours to days for full
quantification on commodity CPUs.
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Motivation

Hardware Opportunity

Data-Parallel Hardware is Waiting

Consumer GPUs > 1012 integer ops/s at
< 100W.
Dedicated bit-manipulation units (e.g.
popcount, VNNI) ideal for Boolean
evaluation.
PRA logic is embarrassingly parallel yet
under-utilizes this silicon.

Device Integer Ops/s

NVIDIA A100 GPU ⇠ 2⇥ 1012

RTX 3060 Laptop ⇠ 3⇥ 1011

8-core CPU ⇠ 8⇥ 108

Single CPU core ⇠ 1⇥ 108

Peak 32-bit integer throughput (vendor
specs)

Key Insight

PRA probability estimation is analogous to forward inference in a feed-forward
neural network :: same hardware, different algebra.
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Introduction

Research Agenda

Research Questions

1 How can all event– and fault–tree dependencies be embedded in a single
probabilistic DAG amenable to high-throughput evaluation?

2 Which data-parallel Monte-Carlo algorithms best leverage modern GPUs for
Boolean circuits with � 105 nodes?

3 What compilation and data-structure transformations minimize graph size and
arithmetic intensity without breaking Monte-Carlo unbiasedness?

4 How can convergence be certified in real time for probabilities spanning
10�0–10�8?

5 What extensions—variance reduction, discrete-event simulation—are needed
for ultra-rare events and time-dependent risk?
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Introduction

Research Agenda

This Dissertation Contributes

1 Unified Risk Graph. Formalized PRA models as probabilistic circuits, prove
semantic equivalence.

2 Hardware–Native Gate Set. Population-count kernels for k-of-n and
cardinality gates :: exponential graph compression.

3 MC-Oriented Knowledge Compilation. Optimizes PDAGs for throughput.
4 Bit-Parallel Monte-Carlo Engine. SYCL kernels achieving massive parallelism.
5 Rigorous Convergence Criteria. Multiobjective, with formal error bounds.
6 Domain Extensions. Common-cause failures, importance measures, and an

importance-sampling prototype for rare events.
7 Open-Source Release & Benchmarks. Reproducible evaluation on 43 Aralia

models; code under permissive license.
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Research Objective 1: From PRA Logic to Probabilistic Circuits

Research Objective 1
Compile PRA Models into Probabilistic Circuits
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Research Objective 1: From PRA Logic to Probabilistic Circuits

Objective 1 — Unifying Risk Logic as a Probabilistic DAG

Map event–tree branching and fault–tree gates into a single probabilistic
directed acyclic graph (PDAG).
Retain exact Boolean semantics while exposing hardware-native operations
(AND/OR, k-of-n, XOR).
Provide a substrate for compilation, bit-parallel evaluation, and future dynamic
extensions.
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Research Objective 1: From PRA Logic to Probabilistic Circuits

PRA Overview

The Triplet Definition of Risk

Define risk as a set of triplets, each representing:
1 What can go wrong? (Si)
2 How likely is it to happen? (Li)
3 What are the consequences? (Xi)

R =
�
hSi, Li, Xii

 
c, (1)

c represents completeness in enumerating all relevant scenarios.
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Research Objective 1: From PRA Logic to Probabilistic Circuits

PRA Overview

Scenario Si Modeling in PRA

Each scenario unfolds from initiating events (IEs), followed by conditional
branching events.

Fundamental goal: assign probabilities to these scenarios and assess resulting
outcomes (e.g., core damage, large release).

Implementation typically uses structured diagrams such as:
Event Trees (ETs): forward chaining from IE to various end states.
Fault Trees (FTs): top-down decomposition to basic events (component failures).
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Research Objective 1: From PRA Logic to Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

In
it

ia
ti

n
g 

E
ve

n
t 

(I
)

X Y Z End States

Variable Expression
X (A|B0)•(A0|(B•C0))
Y C•(D|E)0
Z kn[(A•C), (D•E), F 0]

Table: Unsimplified Boolean expression for
each Top Event

Small, but non-trivial structure:
Basic events are shared.
Some gate outputs are negated.
Event Z is a (k=2) of n=3 gate.

17/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 1: From PRA Logic to Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

Compile a Directed Acylic Graph (DAG) from Logic Model

In
it

ia
ti

n
g 

E
ve

n
t 

(I
)

X Y Z End States

Compile once, evaluate
millions of times:

Layered topological
order for memory
coalescing.
Preserve k-of-n gates to
avoid exponential
blow-up.
Replace linear scans
with hash-indexed
containers.
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Research Objective 1: From PRA Logic to Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

Refinements:
Partition into layers.
Vectorize for SIMD by fusing similar ops.
Feed-forward only: improves caching.

Still not probabilistic: inputs, outputs are bitpacked INT64 tensors.
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Research Objective 1: From PRA Logic to Probabilistic Circuits

Knowledge Compilation and Queries

Querying the Compiled Knowledge Graph

The Simplest Type of Query: Eval(G)
Set the inputs [on/off].
Observe the outputs [on/off].

Can be used as a building block for an embedding ML model.

But just how fast is this?
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Research Objective 1: From PRA Logic to Probabilistic Circuits

Knowledge Compilation and Queries

From Logic to High-Throughput Evaluation

Next: How do we processmillions of scenarios per second?
Hardware-native kernels :: Research Objective 2
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Research Objective 2
Develop data-parallel methods for evaluating Boolean circuits

22/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

Boolean Truth Table – Single Bit

X Y AND OR XOR NAND NOR XNOR
0 0 0 0 0 1 1 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1

Classical gate evaluation operates bit-by-bit. Throughput / number of Boolean
operations.
Perform 64 of these truth-table lookups in one machine instruction.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

Extending to a 64-Bit Word

Pack 64 independent Bernoulli trials into
one byte.
Bitwise primitives act independently on
every bit position.
Hardware native instructions guarantee
ns latency.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

What is a k-of-n (Voting) Gate?

3/5

X1X2X3X4X5

Example: k = 3, n = 5

Outputs 1 iff at least k of n inputs are 1 (majority /
threshold logic).
Classic PRA models expand this gate into basic
AND/OR primitives –> leads to combinatorial blow-up.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

Naïve Expansion => Combinatorial Explosion

Expansion = OR of every
subset with k, . . . ,n true
inputs.
For n = 5, k = 3:

�5
3

�
= 10

conjunction clauses =>
26 total gates after
binary-tree lowering.
Complexity becomes
⇥(2n/

p
n) at k ⇡ n/2.

Y

X1X2X3X1X2X4X1X2X5X1X3X4X1X3X5X1X4X5X2X3X4X2X3X5X2X4X5X3X4X5X1X2X3X4X1X2X3X5X1X2X4X5X1X3X4X5X2X3X4X5X1X2X3X4X5

3-of-5 gate expanded to AND/OR Sum-of-Products
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Bitwise Kernels

Hardware-Native Voting Gate (No Expansion)

Preserve the gate as one vertex; kernel
does bit-parallel population count.
Complexity O(n) integer ops; counter
width  8 bits for PRA fan-ins (256
inputs).
Graph shrinks from ⇥(2n/

p
n) to 1. Huge

memory launch savings.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

The SYCL Execution Model

SYCL Execution Model in a Nutshell
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

The SYCL Execution Model

SYCL Execution Model in a Nutshell

Host submits
queue.submit() with a
kernel_name.

ND-Range h global 3⇥local i
defines grid.

Work-Group maps to CUDA block
OpenCL work-group.

Sub-Group (warp/wavefront) gives
warp-level shuffle &
ballot ops.

Device USM used for persistent
bit-packed buffers.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Kernel Execution

Mapping PDAG Layers to SYCL Kernels
1 Topological sort) depth index d.

2 All nodes with depth d share identical fan-in length. range<3> := (batch, gate, bitpack).

3 One kernel per layer; gate type dispatched via template specialization.

4 Streams results to next-depth buffer in global memory.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Kernel Execution

Eval Query Performance on Generic Backends
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Kernel Execution

Figure: (Top) Throughput in bit/second on various backends for different gate types.
(Bottom) % Relative speedup/slowdown as compared to the AND gate.
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Research Objective 2: Develop data-parallel methods for evaluating Boolean circuits

Kernel Execution

Eval Query Performance on Discrete GPUs

Latency: 20-30ms per layer.
Throughput: Graph depth and VRAM bound
(see plot).
Benchmarked on Nvidia GTX 1660 [6GB].
Graph sizes: from ⇡ 50 to ⇡ 2000 nodes.
Evals: from 16M to 1B per node per pass.

Q: Are these enough samples to estimate the
Expectation Query?
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Research Objective 3
Develop data-parallel Monte-Carlo methods for estimating probabilities on

unified PDAGs
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Bridging Boolean Evaluation and Probabilistic Inference

Previous objective delivered bit-parallel gate kernels that evaluate a PDAG layer
in O(1)machine words.
To quantify risk, we must attach probability distributions to the PDAG leaves
and propagate forward.
Strategy: embed a Monte-Carlo engine that

1 draws bit-packed Bernoulli samples for all basic events, and
2 reuses the same gate kernels to evaluate each random draw.

One kernel pipeline therefore suffices for both deterministic logic and
stochastic sampling.

34/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Back to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

In
it

ia
ti

n
g 

E
ve

n
t 

(I
)

X Y Z End States
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

Back to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

End-to-End Sampling Pipeline (one iteration)

1 Basic-Event Kernel: generate random draws.

2 Gate Kernels: evaluate PDAG layers using
hardware-native logic primitives.

3 Tally Kernel: count number of ones, update
counters, compute estimates.
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

MC Sampling Theory

Monte-Carlo Sampling over PDAGs

1 Draw x(i)
⇠
Q

b2B Bernoulli
�
pb
�
in bit-packed form.

2 Evaluate the Boolean function F : {0, 1}|B|
!{0, 1} (root node) using the gate kernels.

3 Record Y (i)=F
�
x(i)� (failure indicator).

After N iterations

bPN =
1

N

NX

i=1

Y (i), SE(bPN) =

s
bPN(1� bPN)

N
.

Error shrinks as O
�
N�1/2

�
; variance-reduction extensions discussed shortly.
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

MC Sampling Theory

Basic-Event Sampling Kernel

Each basic event b 2 B is modelled as an independent Bernoulli
random variable Xb ⇠ Bernoulli(pb).

A single Monte–Carlo iteration packs ! = 8 sizeof(bitpack_t) = 64
independent trials into one machine word.

For batch index b, bit–pack p, lane �: Xb,p,� ⇠ Bernoulli(pb).

The basic–event kernel uses the counter–based Philox–4×32–10
PRNG; counters are derived from (b,p,�, t), guaranteeing
reproducibility and inter–thread independence.

After one iteration (N = BP! trials) the sufficient statistics per
basic event are sb =

X

p,�

Xb,p,�, bpb = sb/N,

SE(bpb) =
p
bpb(1� bpb)/N.
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

MC Sampling Theory

Tally Kernel
For a designated node v (e.g. system top event) define Y (t)

p,� = Fv
�
X(t)

·,p,�
�
2 {0, 1}.

Tally kernel executes a single SIMD popcount per bit-pack to obtain the per-iteration count
s(t)v =

X

p,�

Y (t)
p,�.

Cumulative statistics after T iterations (NT = TN trials):

Sv =
TX

t=1

s(t)v , bPv =
Sv
NT

.

Unbiased variance estimator

b�2
v =

bPv
�
1� bPv

�

NT
.

Central Limit Theorem. As T ! 1
bPv � Pv

b�v

D��! N (0, 1).
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Research Objective 3: Develop data-parallel Monte Carlo algorithms for probability estimation

MC Sampling Theory

When ”More Samples” is Wasteful

Fixed iteration budgets (N
large and hard-wired) risk
massive oversampling when
Pv is moderate (⇡ 10�4–10�1).

40/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 4: Convergence Guarantees

Research Objective 4
Develop Robust Convergence Criteria
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Research Objective 4: Convergence Guarantees

Criterion 1: Frequentist Half-Width (Wald)
Let {Y (i)}Ni=1 be i.i.d. Bernoulli trials with P = Pr[Y = 1]. The estimator bPN = 1

N
P

i Y
(i) obeys the CLT:

p
N
�bPN � P

� d�! N
�
0, P(1� P)

�
.

A (1� ↵) two–sidedWald interval is therefore

bPN ± z1�↵/2

q
bPN(1�bPN)

N .

Stopping rule

Half-width: hlinN (z) = z
q
bPN(1� bPN)/N. Declare convergence when hlinN /bPN  "rel.

Intuition
Shrinks a relative confidence band around the estimate; fast for moderate P, slow for rare events
where bPN ⌧ 10�4.
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Research Objective 4: Convergence Guarantees

Criterion 2: Bayesian Credible Interval (Jeffreys prior)

Prior p ⇠ Beta
�
1
2 ,

1
2

�
is invariant under re-parameterization. After s successes and f failures the

posterior is
p | data ⇠ Beta

�
s+ 1

2 , f +
1
2

�
.

The central (1� ↵) credible interval [qt,q1�t] with t = ↵/2 has

Stopping rule

half-width hBayesN = (q1�t � qt)/2. Convergence when hBayesN /bPN  "Bayesrel .

Intuition
Integrates parameter uncertainty; maintains correct coverage even when bPN is based on only a
handful of observed failures (rare-event tails).
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Research Objective 4: Convergence Guarantees

Criterion 3: Information-Theoretic Gain
Posterior entropy of Beta(↵,�) is

H(↵,�) = lnB(↵,�)� (↵� 1) (↵)� (� � 1) (�) + (↵+ � � 2) (↵+ �).

After a batch (�s,�f ) the information gain is

Ibatch = H(↵,�)� H(↵+�s, � +�f ).

Stopping rule

Stop when Ibatch < Imin bits (default 10�4).

Intuition
Scale-free; halts when each new batch conveys negligible Shannon information, preventing
oversampling when P is either very small or very large.
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Research Objective 4: Convergence Guarantees

On-the-Fly Updates

Composite Convergence Criteria
Step–1: Statistical precision per node v

N(v)
req = max

⇣
N(v)
" , N(v)

log, N
(v)
Bayes, N

(v)
info

⌘

where

N(v)
" :=

l
z2 bPv(1�bPv)
("relbPv)2

m
,

N(v)
log :=

l
z2(1�bPv)

("log ln 10)2bPv

m
,

N(v)
Bayes := Eq. (Jeffreys),

N(v)
info :=

⌃
(2 ln 2)I�1

min
⌥
.
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Research Objective 4: Convergence Guarantees

On-the-Fly Updates

Composite Stopping Rule

Step–2: Global precision budget

Nreq = max
v2V

N(v)
req.

Step–3: Translate to iteration budget

T" =
lNreq

N

m
, N = BP!.

Step–4: External user limits

Tmax (iteration cap), ⌧max (wall-clock cap).

Stopping time

T = min
�
T", Tmax, T⌧

 
, T⌧ = min{t : ⌧(t) � ⌧max}.

Intuition

Statistical criteria guarantee precision.
T" dominates when resources are
ample.

Rule is conservative: run halts as soon
as any limit is met.
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Research Objective 4: Convergence Guarantees

On-the-Fly Updates

On-the-Fly Diagnostics & Accuracy Metrics
Additional diagnostics when true P is known (for debugging).

Metric Formula

Absolute error �v = |bPv � Pv |
Relative error �v = �v/Pv

Mean-squared error MSEv = (bPv � Pv)
2

Linear half-width hlinv = z
q
bPv(1� bPv)/N

Log half-width hlog
v =

zb�v

bPv ln 10

Bayesian half-width hBayesv =
q1�t � qt

2
Information gain Ibatch = H(↵,�)� H(↵+�s, � +�f )

z–score zv =
bPv � Pv

b�v

�2 goodness-of-fit �2
v = (O1�E1)2

E1
+ (O0�E0)2

E0
47/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 5: Case Studies and Benchmarks

Research Objective 5
Case Studies and Benchmarks
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Research Objective 5: Case Studies and Benchmarks

Aralia Fault Tree Data Set

Overview: Aralia Dataset

Dataset Composition: The Aralia collection consists of 43 distinct fault trees,
each with varying numbers of basic events (BEs), gate types (AND, OR, K/N,
XOR), and minimal cut-set counts.
Diverse Problem Sizes: Small trees (e.g. 25–32 BEs) through large models
with over 1,500 BEs.
Wide Probability Range: Top-event probabilities spanning from rare events
near 10�13 to fairly likely failures with probability above 0.7.
Model Variability: Some trees are primarily AND/OR, others incorporate
more advanced gates (K/N, XOR, NOT), providing thorough coverage of typical
(and atypical) fault tree logic structures.
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Research Objective 5: Case Studies and Benchmarks

Aralia Fault Tree Data Set

Logic Gates
# Fault

Tree
Basic
Events Total AND K/N XOR NOT

Minimal
Cut Sets

Top Event
Probability

1 baobab1 61 84 16 9 - - 46,188 1.01708E-04
2 baobab2 32 40 5 6 - - 4,805 7.13018E-04
3 baobab3 80 107 46 - - - 24,386 2.24117E-03
4 cea9601 186 201 69 8 - 30 130,281,976 1.48409E-03
5 chinese 25 36 13 - - - 392 1.17058E-03
6 das9201 122 82 19 - - - 14,217 1.34237E-02
7 das9202 49 36 10 - - - 27,778 1.01154E-02
8 das9203 51 30 1 - - - 16,200 1.34880E-03
9 das9204 53 30 12 - - - 16,704 6.07651E-08
10 das9205 51 20 2 - - - 17,280 1.38408E-08
11 das9206 121 112 21 - - - 19,518 2.29687E-01
12 das9207 276 324 59 - - - 25,988 3.46696E-01
13 das9208 103 145 33 - - - 8,060 1.30179E-02
14 das9209 109 73 18 - - - 8.20E+10 1.05800E-13
15 das9601 122 288 60 36 12 14 4,259 4.23440E-03
16 das9701 267 2,226 1,739 - - 992 26,299,506 7.44694E-02
17 edf9201 183 132 12 - - - 579,720 3.24591E-01
18 edf9202 458 435 45 - - - 130,112 7.81302E-01
19 edf9203 362 475 117 - - - 20,807,446 5.99589E-01
20 edf9204 323 375 106 - - - 32,580,630 5.25374E-01
21 edf9205 165 142 30 - - - 21,308 2.09351E-01
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Research Objective 5: Case Studies and Benchmarks

Aralia Fault Tree Data Set

22 edf9206 240 362 126 - - - 385,825,320 8.61500E-12
23 edfpa14b 311 290 70 - - - 105,955,422 2.95620E-01
24 edfpa14o 311 173 42 - - - 105,927,244 2.97057E-01
25 edfpa14p 124 101 42 - - - 415,500 8.07059E-02
26 edfpa14q 311 194 55 - - - 105,950,670 2.95905E-01
27 edfpa14r 106 132 55 - - - 380,412 2.09977E-02
28 edfpa15b 283 249 61 - - - 2,910,473 3.62737E-01
29 edfpa15o 283 138 33 - - - 2,906,753 3.62956E-01
30 edfpa15p 276 324 33 - - - 27,870 7.36302E-02
31 edfpa15q 283 158 45 - - - 2,910,473 3.62737E-01
32 edfpa15r 88 110 45 - - - 26,549 1.89750E-02
33 elf9601 145 242 97 - - - 151,348 9.66291E-02
34 ftr10 175 94 26 - - - 305 4.48677E-01
35 isp9601 143 104 25 1 - - 276,785 5.71245E-02
36 isp9602 116 122 26 - - - 5,197,647 1.72447E-02
37 isp9603 91 95 37 - - - 3,434 3.23326E-03
38 isp9604 215 132 38 - - - 746,574 1.42751E-01
39 isp9605 32 40 8 6 - - 5,630 1.37171E-05
40 isp9606 89 41 14 - - - 1,776 5.43174E-02
41 isp9607 74 65 23 - - - 150,436 9.49510E-07
42 jbd9601 533 315 71 - - - 150,436 7.55091E-01
43 nus9601 1,567 1,622 392 47 - - unknown unknown
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Research Objective 5: Case Studies and Benchmarks

Benchmarking Procedure

Benchmarking Setup: Hardware and Environment

Target Hardware:
GPU: NVIDIA® GeForce GTX 1660 SUPER (6GB GDDR6, 1,408 CUDA cores).
CPU: Intel® CoreTM i7-10700 (2.90GHz, turbo-boost, hyperthreading).

Software Stack:
SYCL-based (AdaptiveCpp/HipSYCL), with LLVM-IR JIT for kernel compilation.
Compiler optimization at -O3 for efficient code generation.
Repeated runs (5+) to mitigate transient variations.

Measured Time: Includes entire wall-clock duration, from host-device
transfers and JIT compilation to final result collection.
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Research Objective 5: Case Studies and Benchmarks

Accuracy Benchmarks
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Research Objective 5: Case Studies and Benchmarks

Accuracy vs. Time to Convergence

Figure: Time to convergence for different accuracy targets.
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Research Objective 5: Case Studies and Benchmarks

Convergence Runs
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Research Objective 5: Case Studies and Benchmarks

Convergence Runs, Comparison with MCUB, REA
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Research Objective 5: Case Studies and Benchmarks

Convergence Run – Rare Event, Comparison with MCUB
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Research Objective 5: Case Studies and Benchmarks

Convergence Free Run
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Aralia Fault Tree Data Set - Convergence for Rare Events

Mean Absolute Error - log(P)
# Fault

Tree REA MCUB Monte Carlo
Runtime
[sec]

1 baobab1 1.451 56⇥10�4 1.451 56⇥10�4 7.618 80⇥10�3 2.5 ⇥ 108 0.262
2 baobab2 6.486 28⇥10�3 6.347 05⇥10�3 1.544 36⇥10�3 2.5 ⇥ 108 0.209
3 baobab3 1.215 09⇥10�2 1.167 01⇥10�2 2.248 43⇥10�4 2.4 ⇥ 108 0.259
4 cea9601 9.361 95⇥10�2 9.322 07⇥10�2 2.418 02⇥10�3 1.2 ⇥ 108 0.262
5 chinese 1.087 42⇥10�2 1.063 54⇥10�2 2.146 01⇥10�3 9.4 ⇥ 108 0.277
6 das9201 1.266 49⇥10�1 1.227 65⇥10�1 5.499 63⇥10�5 2.3 ⇥ 108 0.279
7 das9202 7.727 43⇥10�5 2.575 96⇥10�5 1.202 32⇥10�4 5.2 ⇥ 108 0.295
8 das9203 3.590 19⇥10�2 3.559 35⇥10�2 2.317 68⇥10�4 5.2 ⇥ 108 0.292
9 das9204 1.680 86⇥10�1 1.680 87⇥10�1 1.134 95⇥10�1 6.1 ⇥ 108 0.292
10 das9205 9.638 25⇥10�2 9.637 25⇥10�2 2.761 90⇥10�2 3.3 ⇥ 109 0.958
11 das9206 5.435 61⇥10�2 8.896 60⇥10�4 3.515 48⇥10�4 2.0 ⇥ 108 0.269
12 das9207 1.184 86⇥10�1 2.454 92⇥10�2 1.365 19⇥10�4 9.5 ⇥ 107 0.282
13 das9208 4.128 08⇥10�2 3.819 68⇥10�2 9.340 17⇥10�5 2.5 ⇥ 108 0.307
14 das9209 2.112 42⇥10�2 1.702 45⇥101 - -
15 das9601 5.292 85⇥10�2 5.191 22⇥10�2 6.671 74⇥10�4 1.1 ⇥ 108 0.256
16 das9701 5.028 04⇥10�2 3.375 65⇥10�2 6.229 78⇥10�4 2.3 ⇥ 107 0.273
17 edf9201 1.480 12⇥10�1 5.361 82⇥10�2 2.889 06⇥10�4 1.8 ⇥ 108 0.315
18 edf9202 1.071 81⇥10�1 6.059 76⇥10�3 4.539 00⇥10�4 7.8 ⇥ 107 0.271
19 edf9203 2.221 46⇥10�1 1.172 93⇥10�1 3.279 93⇥10�4 8.0 ⇥ 107 0.302
20 edf9204 2.795 31⇥10�1 1.055 91⇥10�1 1.314 16⇥10�4 8.7 ⇥ 107 0.298
21 edf9205 9.943 39⇥10�2 4.462 60⇥10�2 5.601 46⇥10�5 1.9 ⇥ 108 0.284
22 edf9206 6.987 97⇥10�3 7.077 75⇥10�3 -
23 edfpa14b 1.855 74⇥10�1 9.159 83⇥10�2 1.047 67⇥10�3 9.4 ⇥ 107 0.267
24 edfpa14o 1.864 82⇥10�1 9.186 65⇥10�2 3.390 49⇥10�4 9.8 ⇥ 107 0.275
25 edfpa14p 3.400 10⇥10�2 1.662 83⇥10�2 5.350 99⇥10�4 2.1 ⇥ 108 0.294
26 edfpa14q 1.856 09⇥10�1 9.153 66⇥10�2 3.332 92⇥10�4 9.6 ⇥ 107 0.282
27 edfpa14r 2.480 88⇥10�2 2.097 29⇥10�2 9.338 65⇥10�4 2.1 ⇥ 108 0.294
28 edfpa15b 2.163 29⇥10�1 9.370 65⇥10�2 4.678 81⇥10�4 1.1 ⇥ 108 0.283
29 edfpa15o 2.165 02⇥10�1 9.376 27⇥10�2 4.068 46⇥10�5 1.1 ⇥ 108 0.282
30 edfpa15p 2.525 68⇥10�2 1.003 82⇥10�2 3.543 44⇥10�4 2.6 ⇥ 108 0.299
31 edfpa15q 2.163 29⇥10�1 9.370 65⇥10�2 6.747 36⇥10�4 1.1 ⇥ 108 0.284
32 edfpa15r 1.946 93⇥10�2 1.626 68⇥10�2 4.049 24⇥10�4 2.5 ⇥ 108 0.290
33 elf9601 1.981 07⇥10�2 8.089 25⇥10�5 7.866 00⇥10�5 2.3 ⇥ 108 0.274
34 ftr10 1.220 76⇥10�1 9.272 68⇥10�4 1.548 44⇥10�4 2.1 ⇥ 108 0.297
35 isp9601 8.083 92⇥10�2 6.630 74⇥10�2 1.132 64⇥10�4 1.8 ⇥ 108 0.271
36 isp9602 1.745 72⇥10�2 1.477 82⇥10�2 1.352 80⇥10�3 2.3 ⇥ 108 0.281
37 isp9603 3.823 37⇥10�2 3.748 15⇥10�2 3.823 44⇥10�3 2.7 ⇥ 108 0.278
38 isp9604 1.208 89⇥10�1 8.143 13⇥10�2 1.886 65⇥10�4 1.4 ⇥ 108 0.280
39 isp9605 6.573 44⇥10�3 6.570 32⇥10�3 2.934 72⇥10�2 5.0 ⇥ 108 0.262
40 isp9606 2.278 11⇥10�2 1.189 83⇥10�2 1.303 07⇥10�4 3.4 ⇥ 108 0.289
41 isp9607 2.388 80⇥10�2 2.388 80⇥10�2 1.281 36⇥10�1 3.8 ⇥ 108 0.282
42 jbd9601 1.220 01⇥10�1 1.353 43⇥10�2 1.081 16⇥10�4 5.7 ⇥ 107 0.279
43 nus9601 1.6 ⇥ 107 0.289
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Research Objective 6
Develop Importance Measures, Extend Common-Cause-Failure Analysis
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Research Objective 6: Domain Specific Extensions

Compute On-the-Fly Importance Measures

Why Compute Importance Measures?

PRA stakeholders ask: “Which components matter most?”
Classical sensitivity indices (Birnbaum, Fussell–Vesely, RAW, RRW) quantify the
change in top-event probability when basic-event reliabilities shift.
Goal: embed these metrics inside the MC engine — no extra cut-set
enumeration, no separate gate passes.
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Research Objective 6: Domain Specific Extensions

Compute On-the-Fly Importance Measures

Classical Definitions (per basic event i)

Measure Analytical Definition

Birnbaum (MIF) MIFi =
@Ptop
@pi

Critical (CIF) CIFi = MIFi
pi

Ptop
Diagnostic (DIF) DIFi =

Pr{Xi = 1 ^ Z = 1}
piPtop

RAW / RRW Risk achievement / reduction worth — counterfactual probabilities when Xi forced
to 1 or 0

Key insight: All measures reduce to combinations of three sample proportions:

bpi =
si
n
, bp0 =

s0
n
, bp0,i =

s0,i
n

.
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Research Objective 6: Domain Specific Extensions

Compute On-the-Fly Importance Measures

MC Estimation with Minimal Sufficient Statistics

Per-iteration tallies

si si + popcount(Xi), s0 s0 + popcount(Z), s0,i s0,i + popcount(Xi & Z).

Only one extra bitwise AND + popcount per basic event.
Estimator example (Birnbaum):

dMIFi =
bp0,i � bp0bpi
bpi(1� bpi)

.
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Research Objective 6: Domain Specific Extensions

Compute On-the-Fly Importance Measures

MC Estimation with Minimal Sufficient Statistics

Convergence Guarantee

Each counter is a sum of n = TN independent Bernoulli trials:

p
n (bp� p) d

�! N (0, p(1� p)).

By the delta method the importance estimators inherit O(n�1/2) variance.
Same composite stopping rule (half-width, credible interval, info-gain) thus applies
without modification.
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Research Objective 6: Domain Specific Extensions

Common-Cause Failure (CCF) in Monte-Carlo

Motivation: Common-Cause Failures

Independent failure assumption breaks down when components share hidden
dependencies (environment, manufacturing defects, etc.).
Neglecting CCFs can under-predict top-event probability by orders of
magnitude.
Goal: incorporate parametric CCF models without disrupting the bit-parallel
Monte-Carlo pipeline.
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Research Objective 6: Domain Specific Extensions

Common-Cause Failure (CCF) in Monte-Carlo

Graph Construction for a CCF Group C

1 Scale independent leaves. Each basic event ci 2 C keeps an independent probability
(1� �ccf)pci .

2 Insert CCF trigger variable SC with failure probability �ccf =
P

k�2 ⇡C,k .

3 CCF-root gate GC = SC _ c1 _ · · · _ cm routes either independent or common shock to the rest of
the graph.

4 (Optional)Multiplicity shadow gates H(k)
C realize models that distinguish the number k of

simultaneously failed components.

Key property

All new nodes are gates; the set of basic events is unchanged, so the Monte-Carlo sampling kernel
remains untouched.
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Research Objective 6: Domain Specific Extensions

Common-Cause Failure (CCF) in Monte-Carlo

MC Treatment and Convergence Guarantees

Sampling logic
Leaves {SC , c1, . . . , cm} are sampled
independently. Correlation enters
only via logic connectivity.
Same bit-packing kernel, same PRNG
counters – zero performance
overhead.
Trigger variable firing forces
simultaneous bits in the shadow
gate; implemented by one extra OR
reduction.

Unbiasedness Variance
Indicator Z of any top-level node is still a
Bernoulli random variable.

Var[Z] = P(1� P), P = Pr[Z = 1].

Therefore all proofs for half-width,
Bayesian interval, and information-gain
criteria remain valid unchanged. CCF
merely shifts P.

Take-away: CCF groups integrate into MC with zero sampler modification;
convergence diagnostics from Research Objective 4 apply verbatim.67/90
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Research Objective 6: Domain Specific Extensions

Knowledge Compilation for Monte-Carlo

Hierarchy of compiled target languages. Blue nodes represent canonical forms.

1

2

3

4

5

6

7

8

9

10

Boolean Expression

NNF XAG

f-NNF DNNF d-NNF AIG RNF

CNF DNF s-DNNF d-DNNF FPRM

PI IP/BCF PPRM

EPI EIP

sd-DNNF BDD

f-BDD

OBDD

SDD ROBDD

Acronym Full form

NNF Negation Normal Form
XAG XOR-And-Inverter Graph
AIG And-Inverter Graph
ANF/RNF Algebraic/Ring Normal Form
f-NNF Flat Negation Normal Form
DNNF Decomposable Negation Normal Form
d-NNF Deterministic Negation Normal Form
FPRM Fixed Polarity Reed-Muller
CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
s-DNNF Smooth/Structured Decomposable Negation Normal Form
d-DNNF Deterministic Decomposable Negation Normal Form
sd-DNNF Smooth/Structured Deterministic Decomposable Negation Normal Form
PPRM Positive Polarity Reed-Muller
PI Prime Implicate
IP Prime Implicant
BCF Blake Canonical Form
EPI Essential Prime Implicate
EIP Essential Prime Implicant
BDD Binary Decision Diagram
f-BDD Free/Read-Once Binary Decision Diagram
OBDD Ordered Binary Decision Diagram
SDD Sentential Decision Diagram
RoBDD Reduced Ordered Binary Decision Diagram68/90
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Research Objective 6: Domain Specific Extensions

Knowledge Compilation for Monte-Carlo

Two Very Different Compilation Objectives

Exact-Inference KC
Goal: produce a tractable normal
form where queries such as model
counting, SAT, or entropy can be
answered in O(|G|).
Constraints: decomposability,
determinism, smoothness)
DNNF, SDD, ROBDD, etc.
Trade-off: often expands the graph
(CNF!OBDD may grow
exponentially).

Monte-Carlo KC
Goal: maximize throughput of
bit-parallel sampling while keeping the
estimator unbiased.
Constraints: none beyond logical
equivalence;
decomposability/determinism not
required.
Opportunity: aggressively compress
the PDAG, collapse voting sub-trees,
and flatten deep gate stacks to
minimise kernel launches.
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Research Objective 6: Domain Specific Extensions

Knowledge Compilation for Monte-Carlo

Enter: Naive MC-Specific KC Pipeline (Levels 0 . . . 8)
1 L0 Baseline – parse PDAG; keep k-of-n and XOR unexpanded.
2 L1 Null/Negation – eliminate vacuous gates, absorb single negations.
3 L2 Definition Coalescing – merge replicas, detect modules.
4 L3 Boolean Optimization – distributivity detection, Shannon expansion.
5 L4–L5 – condensed passes that, in exact KC, would be repeated; here executed once until

fixed-point.
6 L6 Specialization – map VOT(k/n) to hardware-native gate instead of DNF explosion.
7 L7 Negation Pushdown – only when it reduces bitwise polarity ops.
8 L8 Final Coalescing – stop when further compression <1 

Result
Median gate count shrinks by 1.3×; worst-case fan-in compression up to 2n/

p
n. Compile wall-time

drops 186× compared to recursive normalizer.

70/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Research Objective 6: Domain Specific Extensions

Knowledge Compilation for Monte-Carlo

Why “Relaxed” KC Works for MC

Throughput: fewer gates) fewer kernel launches and lower memory traffic.
MC cost is O(|G|) per iteration: shrink |G|) linear speed-up.
Estimator Unbiasedness: every transformation is a logical equivalence;
Monte-Carlo estimator bP remains unbiased

�
E[bP] = P

�
.

Variance: graph compression leaves Bernoulli variance P(1� P) unchanged;
half-width formulas from Research Objective 4 stay valid.
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Knowledge Compilation for Monte-Carlo

Compression Microbenchmark
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Research Objective 6: Domain Specific Extensions

Knowledge Compilation for Monte-Carlo

Compression Microbenchmark
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Research Objective 6: Domain Specific Extensions

Importance Sampling for Ultra-Rare Events

Why Importance Sampling?

Plain MC requires O
�
P�1(1� P)

�
trials to observe even a single failure when

P⌧ 10�6. Wall-time grows to hours.
Importance Sampling (IS) biases the basic-event probabilities to force rare
scenarios to occur more frequently, then re-weights samples to remain
unbiased.
Objective: integrate IS into the existing bit-parallel kernel with minimal
memory and arithmetic overhead.
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Research Objective 6: Domain Specific Extensions

Importance Sampling for Ultra-Rare Events

Self-Normalized Importance Sampling (per trial)
Biasing rule

qi = clip(c pi, ", 1� "), c > 1.

Draw X⇤
⇠ Bern(qi) independently. Likelihood ratio

for one component:

`i(X⇤
i ) =

pX⇤
i

i (1� pi)
1�X⇤

i

qX⇤
i

i (1� qi)
1�X⇤

i

.

Trial weight L =
Q

i `i(X
⇤
i ).

Point estimator

bPIS =
PN

k=1 L
(k)Z(k)

PN
k=1 L(k)

(self-normalized).

Implementation Hooks

Store qi and two 32-bit
pre-computed ratios pi/qi,
(1� pi)/(1� qi).

Extra multiplication per basic event
to accumulate log L; fused into
existing sampling loop.

One additional reduction per batch
for ⌃L and ⌃LZ.
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Importance Sampling for Ultra-Rare Events

Variance Reduction and Stopping Rule

Classical MC variance: �2
MC = P(1� P)/N.

IS variance:
�2
IS =

1
N

⇣
Eq[L2Z]� P2

⌘
⌧ �2

MC if bias factor c well chosen.

For tilt factor c = 103 and P = 10�8, empirical runs show 100–200× variance reduction.

Convergence guarantee—because bPIS is still a sample mean of i.i.d. weighted Bernoullis, the
CLT and all three statistical half-width criteria from Research Objective 4 apply unchanged with
b�IS.

Practical Tip

Auto-tune c via pilot runs that seek weight coefficient of variation CV ⇡ 1; implemented as a future
work item.
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Limitations & Future Work
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Limitations & Future Work

Where the Framework Still Falls Short

Ultra-rare probabilities (P < 10�8) require a mature importance sampling
engine.
Hardware dependence: peak throughput assumes wide SIMD + high
memory bandwidth; CPU-only runtimes are ⇠100× slower.
Static logic only: time-dependent repair, mission phases, or feedback loops
not yet supported.
Limited dependence models: beyond CCF, no general copula or
Bayesian-network sampling engine.
Manual kernel tuning: batch/bitpack geometry must be tuned per device
family; no auto-tuner.
Validation scope: full-scale industry PRA (e.g. Generic PWR) not yet replicated
end-to-end.
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Limitations & Future Work

Future Work Roadmap
Near-Term (1 yr)

Adaptive variance-reduction
palette: stratified, antithetic,
multi-level MC.
GPU-resident auto-tuner for kernel
geometry and memory layout.
Weighted variance estimator +
half-width for importance
sampling.
Extended benchmark suite (Aralia
+ Generic PWR).

Mid-Term (3 yr)
Discrete-event simulation back-end for
mission-time and repair modeling.
Copula / Bayesian-network engine for
correlated uncertainties.
Gradient-based calibration via Boolean
auto-diff + SGD.
Streaming mode for real-time risk
dashboards.

Ultimate vision: a portable, self-optimizing risk-analytics platform delivering
sub-second updates on enterprise-scale models.79/90
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The End
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Monte Carlo Sampling

Rather than summing or bounding all combinations of failures, simulate
random draws of X.
Each Monte Carlo iteration:

1 Sample x1, x2, . . . , xn
i.i.d.
⇠

Q
p(xi).

2 Evaluate the Boolean function F(x) (cost is just logical gate evaluation).
3 Collect whether F(x) = 1 (failure) or 0 (success).

Repeating for many samples {x(1), . . . , x(N)
} yields a sample average estimate of

the probability.
Benefits:

Bypasses explicit inclusion-exclusion expansions.
Straightforward to parallelize (evaluate each draw in separate threads or blocks).
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Estimator for the Expected Value (i.e., Probability)

A Boolean function F(x) can be viewed as an indicator function: F(x) 2 {0, 1}.
The event {F(X) = 1} has probability E[F(X)].
Monte Carlo estimator:

bPN =
1

N

NX

i=1

F
�
x(i)�,

where each x(i) is a random draw from the input distribution.
By the Law of Large Numbers,

lim
N!1

bPN = Pr
⇥
F(X) = 1

⇤
, almost surely.

Error decreases at rate O(1/
p
N), analyzed via the Central Limit Theorem.
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Building a Monte Carlo Estimator for Event Probabilities

Boolean Functions: Basic Concepts

Let x = (x1, x2, . . . , xn) be a vector of n Boolean variables, each xi 2 {0, 1}.
A Boolean function is any map F(x) : {0, 1}n ! {0, 1}.
Example: If F encodes “system fails,” then F(x) = 1 signifies a failure mode,
where x captures component states.
Modeling perspective:

AND, OR, NOT, k-of-n gates allow composing complex logic.
Each F can be evaluated deterministically if we know x.
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Building a Monte Carlo Estimator for Event Probabilities

Exact Probability Estimation: Inclusion-Exclusion

Suppose each xi has a probability pi = Pr[xi = 1], assuming independence.
We want Pr[F(x) = 1], which is

Pr
⇥
F(X) = 1

⇤
=

X

x2{0,1}n
F(x)

nY

i=1

⇥
pxi
i (1� pi) 1�xi

⇤
.

For sets of events, using the inclusion-exclusion principle:

Pr
⇣ n[

i=1

Ei
⌘

=
nX

k=1

(�1)k+1
X

1i1<···<ikn

Pr
�
Ei1 \ · · · \ Eik

�
.
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Building a Monte Carlo Estimator for Event Probabilities

Approximation Methods: REA and MCUB

For large n, exact enumeration of subsets is exponential, making it impractical for
large Boolean circuits.

Rare-Event Approximation (REA):
Assumes each event has small probability pi ⌧ 1.
Overlaps (intersections of multiple failures) are deemed negligible.
Probability of the union ⇡

P
i Pr[Ei], ignoring higher-order terms.

85/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Limitations & Future Work

Building a Monte Carlo Estimator for Event Probabilities

Approximation Methods: REA and MCUB (cont.)

Min-Cut Upper Bound (MCUB):

Pr
h [

C2{MCS}
C
i


X

C2{MCS}

Y

b2C

pb, (2)

Interprets each minimal cut set (MCS) as a distinct mechanism for failure.
Sums (over)estimate total failure if MCSs share components.
Often used as a conservative bound in safety analyses.

Both methods reduce complexity but can misestimate the true probability
when events are not truly rare or heavily intersect.
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Building a Monte Carlo Estimator for Event Probabilities

Boolean Derivatives: Definition and Interpretation

Boolean Derivative Concept: For a Boolean function F(x) with x = (x1, . . . , xn),
the derivative with respect to xi is defined via XOR:

@F
@xi

= F(xi = 0, x�i) � F(xi = 1, x�i),

where � denotes the exclusive-OR operation, and x�i are all variables except xi.
Interpretation:

@F
@xi

(x) = 1 whenever flipping xi changes the value of F under the specific
configuration x�i.
Captures sensitivity: if @F

@xi
rarely equals 1, then F is robust to changes in xi.

87/90



A Data-Parallel, Hardware-Accelerated Monte Carlo Framework for Quantifying Risk using Probabilistic Circuits

Limitations & Future Work

Building a Monte Carlo Estimator for Event Probabilities

Extension to Monte Carlo Estimation of Boolean Derivatives

Key Idea: Estimate E[ @F/@xi ] by sampling random configurations x(s) of the
Boolean inputs, then checking how F changes when xi is flipped.

Sampling Procedure:
1 Draw x(s) =

�
x(s)1 , . . . , x(s)n

�
from the distribution of interest.

2 Form x(s)
� ei by flipping the ith coordinate.

3 Compute:
@F
@xi

�
x(s)� = F

�
x(s)�

� F
�
x(s)
� ei

�
.

Insight:
Sensitivity and importance analysis using sampling methods.
Gradient computation opens a path towards learning-based tasks.
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Building a Monte Carlo Estimator for Event Probabilities

Avoiding Inclusion-Exclusion via Monte Carlo

Exact expansions for large circuits require enumerating all subsets of failing
components or gates, which is computationally huge.
In contrast, Monte Carlo draws a sample x 2 {0, 1}n and directly evaluates F(x)
without enumerating all subsets.
Each run picks a single draw of failed components from the distribution. After
many runs, the frequency of F = 1 approximates its probability.
Results:

No exponential blow-up in the number of terms.
Straightforward extension to complex gate structures, correlated variables.
Parallelizable on modern CPU/GPU architectures.
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Building a Monte Carlo Estimator for Event Probabilities

Data-Parallel Implementation using SYCL

Data-Parallel Monte Carlo for Boolean Circuits:
Simultaneous evaluation of all intermediate gates, success, and failure paths.
Relax coherence constraints - arbitrary shapes with NOT gates permitted.
Vectorized bitwise hardware ops for logical primitives (AND, OR, XOR, etc.)
Specialized treatment of k/n logic, without expansion.
Simultaneous use of all available compute - GPUs, multicore CPUs.
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