
Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Probability Estimation Using
Monte Carlo Simulation of
Boolean Logic on
Hardware-Accelerated
Platforms

Arjun Earthperson
PhD Candidate, PRA Group

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Motivation

Evolving Hardware Landscape

Industry Response to Emergent AI/ML Workloads

Heavy Investment in Data-Parallel Hardware
GPUs, tensor cores provide high throughput for integer operations.

Apple M4 Neural Engine: ≈ 38 TOPS (int8).
Nvidia RTX 4090: ≈ 1000 TOPS.

Current-gen consumer hardware already supports specialized ops (Intel AMX).

Designed for Inference on Massive Models

≈ 109 parameters on mobile devices (e.g., Gemma 2B).

≈ 1012 parameters on HPC/cloud (LLaMa 4 at 400 Billion).

Comparatively,

Largest (public) PRA models: ≈ 106 parameters (Generic PWR).

However, PRA model quantification is deeply recursive.

2/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Birds’ Eye View

Research Contribution

Overview and Highlights I

High-Throughput Boolean Logic Evaluation (aka Eval Query)

Simultaneous evaluation of all intermediate gates, success, and failure paths.

Relax coherence constraints: arbitrary graph shapes, with NOT, or any other
combination of gates permitted.

Boolean logic manipulation not strictly needed.

Vectorized bitwise hardware ops for logical primitives (AND, OR, XOR, etc.)

Specialized treatment of k/n logic, without expansion.

Concurrent use of all available compute - GPUs, multicore CPUs.

3/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Birds’ Eye View

Research Contribution

Overview and Highlights II

Probability Estimation using Eval Query (aka Expectation Query)

Estimate probabilities for all events in the PRA model simultaneously.

No need to compute the minimal cut sets or prime implicants.

Streamable: Solve the entire PRA model iteratively, approx 0.3 seconds per
iteration, regardless of model size. More iterations needed for complex
models.

4/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

In
it

ia
ti

n
g

E
ve

n
t

(I
)

X Y Z End States

Variable Expression

X (A|B′)•(A′|(B•C′))
Y C•(D|E)′
Z kn[(A•C), (D•E), F ′]

Table: Unsimplified Boolean expression for
each Top Event

Small, but non-trivial structure:

Basic events are shared.

Some gate outputs are negated.

Event Z is a (k=2) of n=3 gate.

5/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

Compile a Directed Acylic Graph (DAG) from Logic Model

In
it

ia
ti

n
g

E
ve

n
t

(I
)

X Y Z End States

Start with an Arbitrary
Topological Ordering:

Aim for succinctness.

prefer HW-native ops.

e.g. don’t expand k/n.

6/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

Refinements:

Partition into layers.

Vectorize for SIMD by fusing similar ops.

Feed-forward only: improves caching.

Still not probabilistic: inputs, outputs are bitpacked INT64 tensors.

7/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

Knowledge Compilation and Queries

Querying the Compiled Knowledge Graph

The Simplest Type of Query: Eval(G)

Set the inputs [on/off].

Observe the outputs [on/off].

Can be used as a building block for an
embedding ML model.

But just how fast is it?

8/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

Knowledge Compilation and Queries

Eval Query on the Compiled Knowledge Graph

Eval Query Performance on GPUs:

Latency: 200-300ms per graph pass.

Throughput: VRAM bound (see plot).

Benchmarked on Nvidia GTX 1660 [6GB].

Graph sizes: from ≈ 50 to ≈ 2000 nodes.

Evals: from 16M to 1B per node per pass.

Q: Are these enough samples to estimate the
Expectation Query?

10M 100M 1B
Bits per node (millions)

30

100

300

1K

10K

N
um

be
r

of
 n

od
es

1GB

2GB

4GB

8GB 16GB

32GB

64GB

128GB Allocated Memory [bits]

9/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

Knowledge Compilation and Queries

Estimator for the Expected Value (i.e., Probability)

A Boolean function F(x) can be viewed as an indicator function: F(x) ∈ {0, 1}.
The event {F(X) = 1} has probability E[F(X)].

Monte Carlo estimator:

P̂N =
1

N

N∑
i=1

F
(
x(i)

)
,

where each x(i) is a random draw from the input distribution.

By the Law of Large Numbers,

lim
N→∞

P̂N = Pr
[
F(X) = 1

]
, almost surely.

Error decreases at rate O(1/
√
N), analyzed via the Central Limit Theorem.

10/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

Knowledge Compilation and Queries

Monte Carlo Sampling

Rather than summing or bounding all combinations of failures, simulate
random draws of X.
Each Monte Carlo iteration:

1 Sample x1, x2, . . . , xn
i.i.d.∼

∏
p(xi).

2 Evaluate the Boolean function F(x) (cost is just logical gate evaluation).
3 Collect whether F(x) = 1 (failure) or 0 (success).

Repeating for many samples {x(1), . . . , x(N)} yields a sample average estimate of
the probability.

Benefits:

Bypasses explicit inclusion-exclusion expansions.
Straightforward to parallelize (evaluate each draw in separate threads or blocks).

11/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

PRA Models as Probabilistic Circuits

Back to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

In
it

ia
ti

n
g

E
ve

n
t

(I
)

X Y Z End States

12/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Preliminary Case Study

13/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Overview: Aralia Dataset

Dataset Composition: The Aralia collection consists of 43 trees.

Diverse Problem Sizes: Small trees (e.g. 25–32 basic events) through
mid-sized models with over 1,500 BEs.

Wide Probability Range: Top-event probabilities spanning from rare events
near 10−13 to fairly likely failures with probability above 0.7.

Model Variability: Some trees are primarily AND/OR, others incorporate
more advanced gates (K/N, XOR, NOT), providing thorough coverage of typical
(and atypical) fault tree logic structures.

14/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Benchmarking Procedure

Benchmarking Setup: Hardware and Environment

Target Hardware:

GPU: NVIDIA® GeForce GTX 1660 SUPER (6GB GDDR6, 1,408 CUDA cores).
CPU: Intel® CoreTM i7-10700 (2.90GHz, turbo-boost, hyperthreading).

Software Stack:

SYCL-based (AdaptiveCpp/HipSYCL), with LLVM-IR JIT for kernel compilation.
Compiler optimization at -O3 for efficient code generation.
Repeated runs (5+) to mitigate transient variations.

Measured Time: Includes entire wall-clock duration, from host-device
transfers and JIT compilation to final result collection.

15/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Benchmarking Procedure

Monte Carlo Execution and Implementation

Objective: Compute TOP event probabilities for all 43 trees.

Sampling Strategy:

Single pass per fault tree, generating as many samples as fit in 6GB GPUmemory.
128-bit Philox4x32x10 pseudo-random number generator, parallel threads.

Bit-Packing Optimization:

Each group of 64 Monte Carlo outcomes stored in a single 64-bit word.
Enables vectorized instructions (e.g. popcount) and reduces memory I/O.

Data Types:

Tallies in 64-bit integers.
Probability accumulations in double precision (64-bit float).

16/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Accuracy Benchmark: Relative error (Log-probability), Data-Parallel Monte Carlo vs Min-Cut Upper Bound and Rare-Event Approximation

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Fault Tree Top Event Probability

10-4

10-3

10-2

10-1

100
R

el
at

iv
e

E
rr

or
lo

g(
P

)

1 714 22 3941

Data Parallel Monte Carlo (DPMC)

Min Cut Upper Bound (MCUB)

Rare Event Approximation (REA)

DPMC MCUB REA

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
E

rr
or

 lo
g(

P
)

17/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Performance Benchmark (Memory Consumption): Sampled Bits Per Event Per Iteration

10M 100M 1B
Bits per node (millions)

30

100

300

1K

10K

N
um

be
r

of
 n

od
es

1GB

2GB

4GB

8GB 16GB

32GB

64GB

128GB

Allocated Memory [bits]
Pruned v1 - Allocated Memory [bits]
Pruned v2 - Allocated Memory [bits]
Pruned v3 - Allocated Memory [bits]

1M 10M 100M 1B 10B
Bits per node (millions)

10

30

100

300

1K

10K

100K

1M

10M

N
um

be
r

of
no

de
s

1GB

2GB

4GB

8GB 16GB

32GB

64GB

128GB

256GB

512GB

1024GB

Allocated Memory [bits]

18/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Outlook

Limitations:

Brute-force/naive Monte Carlo struggles when sampling rare-events.

Implement importance sampling: WIP.

Brute-force/naive Monte Carlo is a poor strategy for sampling correlated
events.

Next Steps:

Benchmark on larger (G-PWR, G-MHTGR) models.

Future Work:

Embedding models from Knowledge Graph, for semantic representation.

Gradient computation on Knowledge Graph.

Minimal cut set computation from Knowledge Graph.

19/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Outlook

The End

20/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Outlook

Knowledge Compilation

Hierarchy of compiled target languages. Blue nodes represent canonical forms.

1

2

3

4

5

6

7

8

9

10

Boolean Expression

NNF XAG

f-NNF DNNF d-NNF AIG RNF

CNF DNF s-DNNF d-DNNF FPRM

PI IP/BCF PPRM

EPI EIP

sd-DNNF BDD

f-BDD

OBDD

SDD ROBDD

Acronym Full form

NNF Negation Normal Form
XAG XOR-And-Inverter Graph
AIG And-Inverter Graph
ANF/RNF Algebraic/Ring Normal Form
f-NNF Flat Negation Normal Form
DNNF Decomposable Negation Normal Form
d-NNF Deterministic Negation Normal Form
FPRM Fixed Polarity Reed-Muller
CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
s-DNNF Smooth/Structured Decomposable Negation Normal Form
d-DNNF Deterministic Decomposable Negation Normal Form
sd-DNNF Smooth/Structured Deterministic Decomposable Negation Normal Form
PPRM Positive Polarity Reed-Muller
PI Prime Implicate
IP Prime Implicant
BCF Blake Canonical Form
EPI Essential Prime Implicate
EIP Essential Prime Implicant
BDD Binary Decision Diagram
f-BDD Free/Read-Once Binary Decision Diagram
OBDD Ordered Binary Decision Diagram
SDD Sentential Decision Diagram
RoBDD Reduced Ordered Binary Decision Diagram

21/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Convergence Trends

Convergence over 1000 iterations, Aralia das9204

22/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Input Data

Logic Gates

#
Fault
Tree

Basic
Events Total AND VOT XOR NOT

Minimal
Cut Sets

Top Event
Probability

1 baobab1 61 84 16 9 - - 46,188 1.01708E-04
2 baobab2 32 40 5 6 - - 4,805 7.13018E-04
3 baobab3 80 107 46 - - - 24,386 2.24117E-03
4 cea9601 186 201 69 8 - 30 130,281,976 1.48409E-03
5 chinese 25 36 13 - - - 392 1.17058E-03
6 das9201 122 82 19 - - - 14,217 1.34237E-02
7 das9202 49 36 10 - - - 27,778 1.01154E-02
8 das9203 51 30 1 - - - 16,200 1.34880E-03
9 das9204 53 30 12 - - - 16,704 6.07651E-08
10 das9205 51 20 2 - - - 17,280 1.38408E-08
11 das9206 121 112 21 - - - 19,518 2.29687E-01
12 das9207 276 324 59 - - - 25,988 3.46696E-01
13 das9208 103 145 33 - - - 8,060 1.30179E-02
14 das9209 109 73 18 - - - 8.20E+10 1.05800E-13
15 das9601 122 288 60 36 12 14 4,259 4.23440E-03
16 das9701 267 2,226 1,739 - - 992 26,299,506 7.44694E-02
17 edf9201 183 132 12 - - - 579,720 3.24591E-01
18 edf9202 458 435 45 - - - 130,112 7.81302E-01
19 edf9203 362 475 117 - - - 20,807,446 5.99589E-01
20 edf9204 323 375 106 - - - 32,580,630 5.25374E-01
21 edf9205 165 142 30 - - - 21,308 2.09351E-01
22 edf9206 240 362 126 - - - 385,825,320 8.61500E-12

23/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

Probability Estimation Using Monte Carlo Simulation of Boolean Logic on Hardware-Accelerated Platforms

Preliminary Case Study: Aralia Dataset

Input Data

23 edfpa14b 311 290 70 - - - 105,955,422 2.95620E-01
24 edfpa14o 311 173 42 - - - 105,927,244 2.97057E-01
25 edfpa14p 124 101 42 - - - 415,500 8.07059E-02
26 edfpa14q 311 194 55 - - - 105,950,670 2.95905E-01
27 edfpa14r 106 132 55 - - - 380,412 2.09977E-02
28 edfpa15b 283 249 61 - - - 2,910,473 3.62737E-01
29 edfpa15o 283 138 33 - - - 2,906,753 3.62956E-01
30 edfpa15p 276 324 33 - - - 27,870 7.36302E-02
31 edfpa15q 283 158 45 - - - 2,910,473 3.62737E-01
32 edfpa15r 88 110 45 - - - 26,549 1.89750E-02
33 elf9601 145 242 97 - - - 151,348 9.66291E-02
34 ftr10 175 94 26 - - - 305 4.48677E-01
35 isp9601 143 104 25 1 - - 276,785 5.71245E-02
36 isp9602 116 122 26 - - - 5,197,647 1.72447E-02
37 isp9603 91 95 37 - - - 3,434 3.23326E-03
38 isp9604 215 132 38 - - - 746,574 1.42751E-01
39 isp9605 32 40 8 6 - - 5,630 1.37171E-05
40 isp9606 89 41 14 - - - 1,776 5.43174E-02
41 isp9607 74 65 23 - - - 150,436 9.49510E-07
42 jbd9601 533 315 71 - - - 150,436 7.55091E-01
43 nus9601 1,567 1,622 392 47 - - unknown

24/24

https://github.com/a-earthperson/ans-psa-2025-inverse-canopy

	Motivation
	Evolving Hardware Landscape

	Birds' Eye View
	Research Contribution

	PRA Models as Probabilistic Circuits
	A Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States
	Knowledge Compilation and Queries
	Back to Working Example: One Initiating Event, Three Fault Trees, Six Basic Events, Five End States

	Preliminary Case Study: Aralia Dataset
	Benchmarking Procedure
	Performance & Accuracy Benchmarks
	Accuracy Benchmark: Relative error (Log-probability), Data-Parallel Monte Carlo vs Min-Cut Upper Bound and Rare-Event Approximation
	Performance Benchmark (Memory Consumption): Sampled Bits Per Event Per Iteration

	Outlook
	
	Knowledge Compilation

	Preliminary Case Study: Aralia Dataset
	Convergence Trends

	Preliminary Case Study: Aralia Dataset
	Input Data

