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UCLEAR SAFETY ANALYSIS requires robust risk
estimates that account for complex failure scenarios.
This research presents a data-parallel Monte Carlo

N

framework that models both success and failure scenarios in
a single pass, harnessing graphics processors to handle

models, while maintaining accuracy. While slow convergence
for rare events remains a challenge, advanced sampling
strategies offer solutions. Future work will incorporate
common-cause dependencies and adaptive variance
reduction to further enhance accuracy and efficiency.
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millions of random draws. Benchmarks against traditional
PRA tools show orders-of-magnitude speedup for large risk
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whether multiple faults must happen together
or if any single fault suffices.

RIPCORD
BREAKS

ACTIVATION

P(A)

P(A) + P(B) - P(A°B)

. P(A) + P(B) - P(A*B) + P(C) - P(A+C) - P(B*C) + P(A*B-C)

P(A) + P(B) - P(A*B) + P(C) - P(A+C) — P(B+C) + P(A*B+C)
+ P(D) - P(A*D) - P(B*D) - P(C*D) + P(A*B*D) + P(A-C+D)
+ P(B+C*D) - P(A*B-C-D)

Exact probability computation becomes
intractible for large systems or complex
scenarios. Alternate strategies are needed
for evaluating large-scale PRA models.

INCLUSION-EXCLUSION

Probabilities are computed using the inclusion-exclusion
orinciple. Enumerating every subset of faults quickly
necomes unmanageable as systems grow.

CHUTE

TANGLED A single bitwise

instruction can operate
on anywhere between
a byte to 2048 bits per
call, depending on
hardware.

Develop an efficient scheme for encoding
linked event trees and fault trees as
unified probabilistic tractable graphs, also
known as probabilistic circuits.

The smallest operand
size for modern x86,
ARM processors.

e

A 64-bit double word,
the largest operand for
general purpose
registers/instructions.

Build a vectorized, data-parallel boolean
function evaluator using hardware-native
bitwise operations. Develop Monte Carlo
sampling schemes for this evaluator.

with the Min Cut Upper Bound (MCUB),
and the Rare Event Approximation (REA)
across probabilities from 10-°® to 10°
DPMC performs accurately over the full
range, while MCUB and REA can miss true
probabilities when events become
extremely rare or non-rare. The chart
shows relative error distributions,
illustrating how massively parallel
sampling stays robust under diverse
conditions.

32 threads simultaneously work
on 64-bit operands, providing
2048 hits of throughput. Available
on NVIDIA GPUs.

512 bits. The maximum
Size currently supported
by x86-64 CPUs using the
AVX2/AMX instruction set.

(1) Improved accuracy, as compared to alternative approximate
methods. (2) Quantify risk models with hundreds of thousands
of components, and millions of failure combinations. (3) Runtime
speedup for comparatively smaller models.

CUDA cores).

CPU: Intel® CoreTM i7-10700 (2.90 GHz, turbo-boost,
hyperthreading).

SOFTWARE STACK
(++ SYCL-based AdaptiveCpp/HipSYCL, with LLVM-IR JIT forkernel compilation.

Rare-events are significantly underepresented. Sampling
correlated or dependent events requires additional
implementation. Scaling studies that challenge accuracy,
throughput, and model size are underway.



