. Б . 1 .

Arjun Earthperson		
Department of N North Carolina S	neering Laboratory fuclear Engineering State University 9 - Raleigh, NC 27695-7909	+1 (984) 318-3833 https://earthperson.org mail@earthperson.org <i>Github:</i> arjun372, <i>LinkedIn:</i> arjun372
EDUCATION	North Carolina State University Ph.D. Nuclear Engineering	Expected Fall 2024
	North Carolina State University M.S. Nuclear Engineering	Summer 2023
	University of California Los Angeles B.S. Electrical Engineering	Fall 2017
EMPLOYMENT	Idaho National Laboratory (INL), Idaho Falls Graduate Summer Intern, Full-Time	May 2021 - August 2021
	 Developed methodologies to assess the reliability of fission batteries (FB) using dynamic PRA methods. Modeled PID software failure modes in FB reactor control systems (RCS) using error propagation (DEPM CTMC), probabilistic model checking (PCTL), and discrete-dynamic event trees (DDET). 	
	• Collaborated with INL's PRA software development team to integrate	OpenPRA OpenEPL with EMRALD.
	The B. John Garrick Institute for the Risk Sciences, UCLA Software Development Engineer, Full-Time	May 2018 - July 2020
	 Development lead for all in-house and on-contract software deliverables at the research institute. Responsibilities included collaborating with researchers to brainstorm research opportunities, specify design requirements, negotiate constraints and implement scalable, production-ready solutions. Trained and managed over 20 developers to deliver 4 web-based software tools over 2 years. 	
	Center for SMART Health, UCLA Undergraduate Student Researcher, Part-Time	June 2016 - Dec 2017
	 Lead a team of 6 to develop a remote health monitoring system currently servicing 1000+ patients. Tasks included embedded development, database design, and API integration for web and mobile applications. Implementation of machine learning algorithms (TensorFlow) tackling time-series health-care datasets. Design and implementation of a cloud-based fleet management platform using AWS for 1000+ devices. 	
COURSEWORK	Risk Assessment for Engineers, Program Management for Engineers, Digital Signal Processing, FPGA Design, Algorithm Design, Operating Systems, Feedback Control, Automata Theory	
SKILLS	Programming: C/C++, Java, Typescript, React, MATLAB, Verilog, Python, UNIX Shell, IATEX Frameworks: NodeJS, Django, Docker, Kubernetes, TensorFlow, Android, SpringBoot, OpenCV, Weka, Xilinx Hardware: EAGLE, NgSpice, Arduino, PCB Design & Etching, SMT soldering rework	
PROJECTS	Human Activity Recognition on Smartwatch: Real-time detection using supervised learning on wrist-worn MEMS inertial motion sensor data. Distinguishes between <i>walking</i> , <i>running</i> , <i>lying down</i> , <i>sitting</i> , <i>standing</i> or <i>inactive</i> . 256 extracted features include energy & entropy in time & frequency domains. Classification using deep neural networks performs at $\geq 85\%$ accuracy in real-world scenarios. Currently being used by 300+ patients in an LA rehab facility.	
	Indoor Location Fingerprinting Using Ambient Wi-Fi: Models multimodal WiFi RSSI as Gaussian Processes and performs Bayesian Estimation for probabilistic location classification. Time-segmented feature extraction on highly sparse datasets. Written for Android with near-real-time feedback and online supervised learning. \geq 70% accurate within 3 seconds, \geq 90% accurate with 10 seconds.	
	Convex Polygon Detector : Real-time polygon detection for low-powered ARM DSPs. The multistage pipeline includes IIR Deriche filter, progressive blurring kernel, gradient detection, non-maximal suppression, hysteresis thresholding and Hough Transform. Final step computes polygon edge count, orientation and side-lengths.	
	Analog Utility Meter Reader : Power consumption detection in real-time using snapshots from mounted USB cameras. OpenCV implementation pipel circular Hough Transform & needle angle detection.	
PATENTS	PCT/US2016/037398: "Subject assessment using localization, activity recognition and a smart questionnaire", A.Naeim, R. Ramezani, Arjun, B. Moatamed, M. Sarrafzadeh	

US Provisional Application (62/330,730) filed May 2, 2016: "Indoor Health Monitoring System", A.Naeim, R. Ramezani, Arjun, B. Moatamed, M. Sarrafzadeh

JOURNAL ARTICLES

- Ramin Ramezani, Minh Cao, Arjun Earthperson, et al. "Developing a Smartwatch-Based Healthcare Application: Notes to Consider". en. In: Sensors 23.15 (July 2023), p. 6652. ISSN: 1424-8220. DOI: 10.3390/s23156652. URL: https://www.mdpi.com/1424-8220/23/15/6652 (visited on 08/07/2023).
- [2] Arjun Earthperson, Courtney M. Otani, Daniel Nevius, et al. "A combined strategy for dynamic probabilistic risk assessment of fission battery designs using EMRALD and DEPM". en. In: *Progress in Nuclear Energy* 160 (June 2023), p. 104673. ISSN: 0149-1970. DOI: 10.1016/j.pnucene.2023.104673. URL: https://www.sciencedirect.com/science/article/pii/S0149197023001087 (visited on 03/30/2023).
- Elaheh Rabiei, Lixian Huang, Hao-Yu Chien, et al. "Method and software platform for electronic COTS parts reliability estimation in space applications". en. In: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability (Mar. 2021), p. 1748006X2199823. ISSN: 1748-006X, 1748-0078. DOI: 10.1177/1748006X21998231. URL: http://journals.sagepub.com/doi/10.1177/1748006X21998231 (visited on 03/25/2021).

CONFERENCE PAPERS

- [4] Egemen M. Aras, Asmaa S. Farag, Arjun Earthperson, et al. "Benchmark Study of XFTA and SCRAM Fault Tree Solvers Using Synthetically Generated Fault Trees Models". In: Volume 9: Mechanics of Solids, Structures, and Fluids; Micro- and Nano-Systems Engineering and Packaging; Safety Engineering, Risk, and Reliability Analysis; Research Posters. Columbus, Ohio, USA: American Society of Mechanical Engineers, Oct. 2022, V009T14A016. ISBN: 978-0-7918-8671-7. DOI: 10.1115/IMECE2022-95783. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2022/86717/V009T14A016/1157443 (visited on 02/15/2023).
 - [5] Courtney Otani, Robby Christian, Arjun Earthperson, et al. "Probabilistic Methods for Cyclical and Coupled Systems with Changing Failure Rates". en. In: Probabilistic Safety Assessment and Management. Honolulu, O'ahu, Hawaii, USA, 2022, p. 11. URL: https://www.osti.gov/servlets/purl/1885929.
 - [6] Bineh Ndefru, Karthik Sankaran, Theresa Stewart, et al. "Risk-Informed Decision-Making Tool for Covid-19 Community Behavior and Intervention Scenario Assessment". English. In: Proceedings of the 16th International Conference on Probabilistic Safety Assessment and Management (PSAM). Vol. 3. Honolulu, Hawaii, USA: Curran Associates, Inc., July 2022. ISBN: 978-1-71386-375-5. URL: https://www.iapsam.org/PSAM16/papers/KS45-PSAM16.pdf.
- [7] Arjun Earthperson and Mihai A. Diaconeasa. "Verification Study of the Nuclear PRA for the Mars 2020 Mission Following Accidental Orbital Re-Entry". In: Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters. Virtual, Online: American Society of Mechanical Engineers, Nov. 2021, V013T14A019. ISBN: 978-0-7918-8569-7. DOI: 10.1115/IMECE2021-71359. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85697/V013T14A019/1133290 (visited on 02/04/2022).
- [8] Priyanka Pandit, Arjun Earthperson, Alp Tezbasaran, et al. "A Quantitative Approach to Assess the Likelihood of Supply Chain Shortages". In: Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters. Virtual, Online: American Society of Mechanical Engineers, Nov. 2021, V013T14A023. ISBN: 978-0-7918-8569-7. DOI: 10.1115/IMECE2021-73696. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85697/V013T14A023/1133260 (visited on 02/04/2022).
- [9] Priyanka Pandit, Alp Tezbasaran, Arjun Earthperson, et al. "Evaluating the Implementation of Distributed Ledger Technology for the Licensing and Regulation of Nuclear Power Plants". In: Volume 8B: Energy. Virtual, Online: American Society of Mechanical Engineers, Nov. 2021, V08BT08A016. ISBN: 978-0-7918-8564-2. DOI: 10.1115/IMECE2021-71730. URL: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85642/V08BT08A016/1132953 (visited on 02/04/2022).
- [10] Rahul Malavalli, Arjun Earthperson, and Nilesh Gupta. "Indoor Localization Through Machine Learning on WiFi Fingerprints". en. In: IPIN 2017. Sapporo, Japan, Sept. 2017, p. 4. URL: https://www.researchgate.net/profile/Arjun_Earthperson/publication/323355438_Indoor_Localization_ Through_Machine_Learning_on_WiFi_Fingerprints/links/5a8f64480f7e9ba429697e4d/Indoor-Localization-Through-Machine-Learning-on-WiFi-Fingerprints.pdf.
- [11] Babak Moatamed, Arjun Earthperson, Farhad Shahmohammadi, et al. "Low-cost indoor health monitoring system". In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). San Francisco, CA, USA: IEEE, June 2016, pp. 159–164. ISBN: 978-1-5090-3087-3. DOI: 10.1109/BSN.2016.7516252. URL: http://ieeexplore.ieee.org/document/7516252/ (visited on 02/13/2021).
- [12] Kevin Bouchard, Ramin Ramezani, Arjun Earthperson, et al. "Evaluation of Bluetooth beacons behavior". In: 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). New York City, NY, USA: IEEE, Oct. 2016, pp. 1–3. ISBN: 978-1-5090-1496-5. DOI: 10.1109/UEMCON.2016.7777846. URL: http://ieeexplore.ieee.org/document/7777846/ (visited on 02/15/2021).

CHAPTERS

- [13] A. Wijangco, A. Earthperson, I. de Monbrison, et al. "haze-space". In: Impeccable Warriors: 1/22 Down in the Dirt 191.1/22 (Jan. 2022). ISSN: 979-8784094520. URL: https://books.google.com/books?id=RdHbzgEACAAJ.
- [14] Zhihua Wang, Toko Hata, Shakti Pada Mukhopadhyay, et al. Running Out of Time: Scars Publications 2022 collection book. English. Scars Publication, Nov. 2022. ISBN: 9798364501523.